Simulation of Mixture Formation and Combustion for Gasoline Direct Injection Engine Using OpenFOAM

Chen Huang, Ehsan Yasari and Andrei Lipatnikov

Chalmers University of Technology, Sweden

Chen Huang

Outline

Goals

□ Simulation of gasoline-ethanol hollow-cone sprays

- Modifications of spray sub-models
- Validations
- On-going work: premixed turbulent combustion

Conclusions

Goals

Main goal: *Assess* the potential of *OpenFOAM* and further develop it. *Another goal*: *Assess* the applicability of *various spray models* to simulating sprays discharged by a *pintle*-type injector (*not develop new spray models*).

Chen Huang

Outline

Goals

□ Simulation of gasoline-ethanol hollow-cone sprays

- Modifications of spray sub-models
- Validations
- On-going work: premixed turbulent combustion

Conclusions

Illustration of modelling a hollow-cone spray using Lagragian approach

Illustration of how a hollow-cone spray is modeled numerically.

*Fantasy of flow: the world of fluid flow captured in photographs. By Kashika Jōhō Gakkai

Chen Huang

Spray models in OpenFOAM

Function	Name			
Injector model	Unit		Pintle	
Primary breakup model	Rosin-Rammler			
	LISA	VIDT		
Secondary breakup model	TAB		KHKI	
	Reitz-Diwakar			
Collision model	O'Rourke			
	Trajectory			
VSB2 spray model.				
	The physical properties of gasoline.*			

*http://www.tfd.chalmers.se/~hani/kurser/OS_CFD_2009/ChenHuang/OFProject0122.pdf

The KHRT Model

Chen Huang

Modifications of KHRT model

	KHRT-2	Standard KHRT
The mass of the liquid stripped of the parent droplets	$4\pi N_0 \rho_f (r_0^3 - r^3)/3$	$\sum \left(4\pi N\rho_f r_{KH}^3/3\right)$
The radius of parent droplets after breakup	$Nr^{2}(r - r_{\rm KH}) = N_{0}r_{b}^{2}(r_{b} - r_{\rm KH})$	unchanged
The number of child droplets	$n = \frac{Nr^3 - Nr_b^3}{r_{\rm KH}^3}$	not calculated
Breakup criteria	$m_s = 0.03 \overline{m_{inj}}, and n > N_0$	$m_s = 0.20 \overline{m_{inj}}$

Correct version in OpenFOAM-2.0.0

src/lagrangian/spray/submodels/BreakupModel/ReitzKHRT

KHRT-2 vs. standard KHRT

Comparison of measured (symbols) and calculated (lines) gasoline liquid penetration and SMD. T_a =350K, T_f =243K, p_a =6bar.

Injector Models

Injection direction: randomly distributed within inner cone angle and outer cone angle Injection position: randomly distributed over the circle

Injection direction: randomly distributed within inner cone angle and outer cone angle Injection position: along the ring, depending on injection direction

Unit and Pintle Injector Models

Comparison of liquid penetration and downstream velocity components U_z calculated using unit and pintle injector model along the central line of the spray.

OpenFOAM-2.0.0

src/lagrangian/intermediate/submodels/Kinematic/InjectionModel/ConeNozzleInjection/

Chen Huang

Experimental and Computational Setup

Experimental setup (Hemdal et al. SAE 2009-01-1496) high-speed camera: spray imaging PDA: droplet size $(T_{fuel}=243 \text{ K}, T_{air}=350 \text{ K}, p_{inj}=50, 125, 200 \text{ bar})$

Computational mesh 1 754 400 cells Size 0.78 x 0.78 x 0.85 mm (center)

Validation, Rosin-Rammler + VSB2 model

effect of fuel and p_{inj}

Comparison of measured (symbols) and calculated (lines) ethanol liquid penetration and SMD for different injection pressures. Rosin-Rammler distribution (r_m =7.5µm, q=3), VSB2 model. T_a =350K, T_f =243K.

Validation, Uniform droplet size + KHRT-2

Comparison of measured (filled symbols) and calculated (lines) liquid penetration and SMD of gasoline.

Chen Huang

Validation, Uniform droplet size + KHRT-2

Comparison of measured (filled symbols) and calculated (lines) liquid penetration of gasoline for different ambient and fuel temperatures.

Comparison of spray shapes Uniform droplet size + KHRT-2

0.18 ms	0.36 ms	0.64 ms	0.82 ms	
	- Andrewsper			
Gasoline spray shapes measured (first row) and calculated				

using KHRT-2 model (second row) at different instances. $T_{air}=350$ K, $T_{fuel}=243$ K, $p_{inj}=200$ bar.

Chen Huang

Outline

Goals

□ Simulation of gasoline-ethanol hollow-cone sprays

- Modifications of spray sub-models
- Validations
- On-going work: premixed turbulent combustion

Conclusions

Basics on premixed turbulent combustion

Chen Huang

Which way is correct in calculating \widetilde{T} ?

Premixed turbulent combustion theory	Standard OpenFOAM
By BML concept	Solving the following eq. which seems like Janaf eq.
$\widetilde{T} = T_u \widetilde{b} + T_b (1 - \widetilde{b})$	$\frac{\tilde{h}W_m}{R} = a_{1m}\tilde{T} + \frac{a_{2m}}{2}\tilde{T}^2 + \frac{a_{3m}}{3}\tilde{T}^3 + \frac{a_{4m}}{4}\tilde{T}^4 + \frac{a_{5m}}{5}\tilde{T}^5 + a_{6m}$

www.openfoamworkshop.org/6th_OpenFOAM_Workshop_2011/Program/Abstracts/ehsan_yasari_ab.pdf

Why is approach in OpenFOAM wrong?

- In OpenFOAM, unburned and burned gases are treated like a multi-component mixture.
 - But totally different phenomenon.

□ Janaf eq. was averaged with error in OpenFOAM.

$$\widetilde{T}^n \neq \widetilde{T^n}$$

Conclusions

- A number of modifications of the implementation of various spray models in OpenFOAM were done in order to follow the description of these models in the original papers.
- Pintle injector model was implemented in OpenFOAM to simulate sprays discharged by pintle injector.
- Among these modifications, the change of the implementation of the KHRT model had the most important effect on the computed penetration length and especially SMD at high injection pressures.
- Problem of calculating \tilde{T} for premixed turbulent combustion in OpenFOAM was addressed.

Thank you for your attention!

chen.huang@chalmers.se

