Numerical Study on the Combustion and Emission Characteristics of Different Biodiesel Fuel Feedstocks and Blends Using OpenFOAM

UNITED KINGDOM · CHINA · MALAYSIA

Harun M. Ismail¹, Xinwei Cheng¹, Hoon Kiat Ng¹, Suyin Gan¹ and Tommaso Lucchini²

¹Department of Mechanical, Materials and Manufacturing Engineering University of Nottingham (Malaysia Campus)

² Dipartimento of Energia, Politecnico di Milano, Italy

Introduction

Motivation

- Both conventional petroleum industry and bio-fuel industry (Palm Oil) is a multi-million dollar business in Malaysia (biggest Palm Oil exporter in the world)
- Limited petroleum resources and increasing emission standards
- Bio-fuels still at its infancy stage, the development of theories to understand its combustion and emission nature is not widely available

Objectives of this work

- Development and applications fuel thermo-physical and transport properties of Coconut (CME), Palm (PME) and Soy methyl-esters (SME) for in-cylinder (IC) spray combustion CFD modelling
- Development and applications of generic reduced combustions kinetics suitable for CME, PME and SME for CFD, IC engine applications
- Analyse the influence and relation between fuel properties and fuel spray structures for different biodiesel/diesel blend levels (B0 B100) and fuel type
- Investigate combustion and emission characteristics for different blend levels and fuel type (CME, PME and SME)

Biodiesel Thermo-physical & Transport Properties

- Properties calculated using "Group contribution method"
- Evaluation of fuel thermo-physical properties & transport properties up to the critical temperature of a respected fuel

Type of	Chemical	Soy	Palm	Coconut
Fatty-acids	Formula	%	%	%
Saturated	$C_{12}H_{26}O_{2}$	-	-	48
Saturated	$C_{15}H_{30}O_{2}$	-	-	/ 17 \
Saturated	$C_{11}H_{22}O_{2}$	-		9 <
Saturated	$C_{17}H_{34}O_{2}$	18	42	8
Saturated	$C_{19}H_{38}O_{2}$	7	5	· · · / ·
Unsaturated	$C_{19}H_{36}O_{2}$	10	41	18/
Unsaturated	$C_{19}H_{34}O_{2}$	60	10	
Unsaturated	$C_{19}H_{32}O_{2}$	10	2	-

Bio-fuel components

•Based on information compiled from open literature and lab fuel test

•Five largest contributing components of ME are identified for properties computation

	177.	172	/、
Property	CME	PME	SME,
Critical Temperature (K)	773.5	789.2	721.2
Critical Pressure (bar)	14.0	13.0	15.3
Critical Volume (ml/mole)	1064.0	1084.0	885.0

Biodiesel Thermo-physical & Transport Properties

The University of Nottingham

UNITED KINGDOM · CHINA · MALAYSIA

Biodiesel Thermo-physical & Transport Properties Implementations in OpenFOAM

ł

UNITED KINGDOM · CHINA · MALAYSIA

```
//- Construct null
                                           Snippets of properties implemented in
PME2()
                                              OpenFOAM fuel library
   TValues (6, 0.0),
         dataValues (6, 0.0),
          rho
                "rho",
                "Temperature",
                "density",
                (TValues ),
                (dataValues )
          ),
         scalarField& rhoX = rho .x();
          rhoX[0] = 280;
          rhoX[1] = 380;
          rhoX[2] = 480;
          rhoX[3] = 580;
          rhoX[4] = 680;
          rhoX[5] = 780;
                                                             Interpolate function
                                                          were utilised to estimate
          scalarField& rhoY = rho .y();
                                                              fuel properties at
          rhoY[0] = 887.95;
          rhoY[1] = 750.33;
                                                            different temperatures
          rhoY[2] = 618.03;
          rhoY[3] = 488.81;
          rhoY[4] = 355.08;
          rhoY[5] = 134.91;
```

Experimental Setup (Nottingham Research Engine)

UNITED KINGDOM · CHINA · MALAYSIA

Experimental Setup (Chalmers HP/HT Rig)

Utilised OpenFOAM ICE-Lib (Polimi) Models

The University of **Nottingham**

UNITED KINGDOM · CHINA · MALAYSIA

Validations of Fuel Thermo-physical &

Meeting on Internal Combustion Engine Simulations Using OpenFOAM, Milan, Italy, 2011

0.0

0.5

1.0

1.5

2.0

Time / [ms]

2.5

3.0

3.5

4.0

Validations of Fuel Thermo-physical & Transport Properties Using OpenFOAM

Illustration of the four fuel species distribution contour plot

Effects of Fuel Thermo-physical & Transport Properties (Fuel Type Comparison)

UNITED KINGDOM · CHINA · MALAYSIA

0.05 0.075 0.1 0.05 0.075 0.1 - 5° CAD 9.0E-07 0.110924 0.110924 IDEA CME Evap MassIDEA (B0) 8.0F-07 Evap MassCME (B100) Exaborated Mass / [kg] 6.0E-07 5.0E-07 4.0E-07 3.0E-07 Evap MassPME (B100) Evap MassSME (B100) 0.025 0.05 0.075 0.1 0.025 0.05 0.075 0.1 0.110924 0.110924 CAD range before start PME SME 2.0E-07 of combustion (SOC) 1.0E-07 0.0E+00 -3 -1 1 '-11 -9 Crank Aníale 100 % of Unsaturation Fuel Composition / [% by vol] Saturated 90 Unsaturated SME > PME > CME 80 70 60 Rate of Evaporation: 50 % of individual 40 composition Diesel (IDEA) > CME > SME > PME 30 that makes up 20 Mass of fuel injected equal for all fuel SME and PME 10 0 CME PME SME

Meeting on Internal Combustion Engine Simulations Using OpenFOAM, Milan, Italy, 2011

Fuel Type

Effects of Fuel Thermo-physical & Transport Properties (Fuel Type Comparison)

Effects of Fuel Thermo-physical & Transport Properties (Palm B0-B100)

UNITED KINGDOM · CHINA · MALAYSIA

Development & Applications of Generic Reduced Biodiesel Fuel Surrogate Combustion Kinetics

Motivation

- Computational resources (time & cost)
- Lack of widely available biodiesel mechanism validated for Palm, Coconut and Soy methyl-esters
- To investigate the combustion and emission characteristics of Palm, Soy and Coconut biodiesel fuels.

Reduced and validated for 48 shock-tube conditions (STC) during entire mechanism reduction process with comparison the detailed mechanism

Meeting on Internal Combustion Engine Simulations Using OpenFOAM, Milan, Italy, 2011

0-D (PSR) Validations of Generic Reduced Biodiesel Fuel Surrogate Combustion Kinetics

Gas Phase (PSR) Validations at 48-STC

- Error in ID less than 13 % during 0-D reductions process as compared to LLNL mechanism
- Combine with modified skeletal n-heptane mechanism to match energy content and C/H/O ratio
- ID shown here based on Nottingham Research Engine calibrations

3-D CFD Validations of Reduced Biodiesel Fuel Surrogate Combustion Kinetics Using OpenFOAM

Meeting on Internal Combustion Engine Simulations Using OpenFOAM, Milan, Italy, 2011

The University of

Nottingham

Combustion and Emission Characteristics of Palm, Soy and Coconut (B100) Biodiesel Fuels

Meeting on Internal Combustion Engine Simulations Using OpenFOAM, Milan, Italy, 2011

The University of

UNITED KINGDOM · CHINA · MALAYSIA

Nottingham

Combustion and Emission Characteristics of Palm, Soy and Coconut (B100) Biodiesel Fuels

The University of **Nottingham**

UNITED KINGDOM · CHINA · MALAYSIA

Conclusions

- Main objectives of development and implementations of biodiesel fuel properties and combustion kinetics were achieved
- As for preliminary validations, good level of agreement was achieved between computed and measured data for both fuel properties and combustion kinetics
- Effects of fuel properties and chemical kinetics could be isolated using CFD studies to better understand the combustion and emission characteristics of biodiesel fuel in CI engines

Acknowledgments

- Authors would like to thank Dr. Tommaso Lucchini for his helpful suggestions and guidance
- Authors would like to thank Internal Combustion Engine (ICE) Group PoliMi for the collaborative effort given during the research work
- This research work is currently funded by Ministry of Science of Technology (MOSTI) of Malaysia.

THANK YOU

Contact email: harun.ismail@nottingham.edu.my

Internal Combustion Engine Group Energy, Fuel and Power Technology Research Division Department of Mechanical, Materials and Manufacturing Engineering University of Nottingham (Malaysia Campus)