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CFD of combustion in Diesel engines still a challenge:
Complexity of the physical and chemical fundamental processes in a 
highly transient environment

BACKGROUND

INTERNAL 
FLOW
•Cavitation

MIXTURE 
FORMATION
•Liquid breakup
•Evaporation
•Momentum transfer

COMBUSTION
•Turbulent mixing
•Chemistry

POLLUTANT 
EMISSIONS

IN-CYLINDER BOUNDARY CONDITIONS:
Piston displacement, spray-spray & spray-wall interactions,…
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BACKGROUND

Engine Combustion Network (ECN)
Necessary dialogue between research efforts

Experiments Calculations
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Engine Combustion Network (ECN)
Spray A condition
Single-hole injector
Typical Diesel combustion conditions

Injection Value
Nozzle diameter [µm] 90

Injection pressure [bar] 500-1500

Injection duration [ms] 1.5 / 5

BACKGROUND

Ambient Value
Pressure [bar] 60

Temperature [K] 700-1000

Density [kg/m³] 22.8

O2 [%] 13-15-21
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BACKGROUND

Diesel combustion, a 
highly transient process

Inert phase
Tip penetration (S)
Liquid stabilization (LL)

Auto-ignition and diffusion
flame
Tip penetration (S)
Ignition delay (tSoC)
Lift-off length (LOL)
Flame stabilization (FL) LL

LoL

tSoC

FL

S S S SS S S S

FLFLFL

N
o
z
z
l
e
t
i
p

S



7Two-day Meeting22/02/2018

CFD of combustion in Diesel engines still a challenge:
Two fundamental modelling steps:
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Eulerian spray modelling

Motivation
Classical spray DDM description
Liquid phase → lagrangian approach
Gas phase → eulerian framework

Complex liquid-gas near-nozzle interface
Modeling (and experiments) should move away from the droplet concept 
within the spray dense core
DDM not well suited for this region
ICM unfeasible (↑↑ Re & We)

Gas

Liquid

Source: ECN, https://ecn.sandia.gov/ Source:https://ctflab.mae.cornell.edu/research.html

Diffuse-interface 
eulerian methods arises 
as an interesting option






10Two-day Meeting22/02/2018

Eulerian spray modelling

Single-fluid diffuse-interface approach
Flow scales separation at high Re & We
Large scale liquid dispersion independent from 
atomization processes occurring at smaller scales

Mean velocity field
Liquid/gas mixture considered as a single velocity 
pseudo-fluid

Liquid mass dispersion
Modeled as turbulent mixing of variable density fluid  
by means of liquid mass fraction (Y) transport eq.

Atomization process
Mean liquid geometry modeled by surface area of 
the liquid-gas interphase (Σ)

(Vallet & Borghi, AAS (2001))
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Eulerian spray modelling

OF implementation
Pressure eqn.
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≡EOSρ
≡ρ

From density equation
From continuity

≡tδ Time step
≡rK Constant multiplier

Following Jasak’s algorithm

1. Compressibility effects.

2. Thermal expansion effects.

3. Multiphase mixing effects.

4. Relax penalty function

Trask et al., JPP 28 (2012):685-693
García-Oliver et al., AAS 23 (2013):71–95

Pandal et al., IJMF 83 (2016):162–171
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Eulerian spray modelling

Computational domain
Coupled and decoupled nozzle-spray 
flow simulations

Boundary conditions
Bulk inj. velocity from MFR
Non-reflecting at open-ends

Turbulence modelling
RANS
Std & RNG k-ε
SST k-𝝎𝝎

LES
Synthetic turbulent fluctuations at inlet
SGS model Sigma*

*Nicoud et al., POF 23(2011) 
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Eulerian spray modelling

Near-field
Turbulence modelling impact (RANS)
Nozzle outlet flow

– Sharper profile for k-𝝎𝝎 (↑ca) compared to k-ε models
Spray dispersion (PMD)

– Best results for Std k-ε +c1ε=1.6, radial dispersion overpredicted by 
RNG and k-𝝎𝝎

Cv [-] Ca[-] Cd[-]

EXP 0.93 0.98 0.9

Std k-𝜺𝜺 0.90 0.976 0.88

RNG k-𝜺𝜺 0.90 0.977 0.88

SST k-𝝎𝝎 0.89 0.99 0.884

PM
D

 [µ
g/

m
m

2 ]

Pandal et al., CompFluid 157(2017):9-20
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Eulerian spray modelling

Near-field
Improved near-nozzle liquid dispersion compared to DDM

Desantes et al., AAS 26 (2016):713-737
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Eulerian spray modelling

Near-field
RANS→LES
TIM shows the potential of 
less diffusive LES modelling

Desantes et al., ILASS Europe (2017)



16Two-day Meeting22/02/2018

Eulerian spray modelling

Far-field
Consistent results downstream

García-Oliver et al., AAS 23 (2013):71–95

Z=Zst

Z=0.01·Zcl

Vapor and liquid 
tip penetration
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Eulerian spray modelling

Far-field
Improved predictions compared to calibrated DDM

Desantes et al., AAS 26 (2016):713-737
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Eulerian spray modelling

Far-field: Parametric variations

P

García-Oliver et al., AAS 23 (2013):71–95

Injection Pressure Ambient Temperature Ambient density
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COMBUSTION MODEL

Approach
Unsteady Flamelet Model (USFM)

(Naud et al, CAF, 2014)

Tabulated chemistry  Large 
chemical mechanisms
Approximated Diffusion Flamelet
 In order to reduce the 
computational effort required to 
generate the laminar flamelets
database 
Source terms from a set of HR
Laminar diffusion accounted later 
by solving the flamelet equation 
ONLY for the progress variable

Currently moving to fully detailed 
Flamelet calculations (DF)

(Payri et al., AppMathModel, 2017)
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COMBUSTION MODEL

Approach

TCI accounted by presumed-PDF 
(PCM)
Beta-PDF for mixture fraction
LogNormal-PDF for SDR (χ)

Coupling with CFD by 
transporting a set of control 
variables + key species
 �𝑍𝑍, �𝑍𝑍′′2, �𝑌𝑌𝑘𝑘
 Algebraic model for �χst

Winklinger, J.,  Ph.D. Thesis (2014)
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SPRAY COMBUSTION

Modeling setup
Domain (ϕ54x108 mm)
RANS: std k-ε + C1ε=1.55

– 2D axsym (50 kcells)
– Min cell size 250 µm 

LES: dynamic Structure*
– 3D (3.6 Mcells)
– Min cell size 62.5 µm 

DDM spray:
KH + RT atomization & break-up

Chemical mechanisms:
Narayanaswamy et al, 
Comb.Flame 2014

– 255 species 
Yao et al, Fuel, 2017

– 54 species
Wang et al, Fuel, 2014

– 100 species*Pomraining & Rutland, AIAA 40 (2002)
Bharadwaj et al. IJER 10(2009)
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Desantes et al., Applied Thermal Engineering 117 (2017): 50–64

COMBUSTION MODEL

Spray calibration & assessment
Necessary step to capture 
mixing field: 
Fair agreement of averaged 
fields with RANS 
Fluctuations are captured with 
typical calibration constant value
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COMBUSTION MODEL

Spray calibration & assessment
Necessary step to capture 
mixing field: 
LES provides good averaged 
values and lower model constant 
impact on fluctuations
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COMBUSTION MODEL

Global combustions indicators
ID: Central role of chemistry
Similar sensitivity in sprays as in 
homogeneous conditions

LOL: TCI problem
Both flow and chemistry accounts…

HRs calculation

Ignition range

Desantes et al., ILASS (2017): 50–64
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COMBUSTION MODEL

Global combustions indicators: RANS → LES
 Both ID and LOL predictions are affected by turbulence 
modelling approach
ID is noticeably decreased 
LOL is also shortened

Narayanaswamy Chemical mech.
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COMBUSTION MODEL

Flame structure
RANS simulations produce 
meaningful flame structure 
with the proposed approach

T

CH2O

OH

C2H2

Tmax|Z path 
along AI

Desantes et al. / Applied Thermal Engineering 117 (2017) 50–64
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COMBUSTION MODEL

Flame structure
Further validation require refined experimental diagnostics

CH2O (or PAH)

Zst

Pandal et al., IJMF 99 (2018):257–272

OH



29Two-day Meeting22/02/2018

COMBUSTION MODEL

Flame structure
RANS → LES

RANS

LES

LES avg

Temperature OH
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COMBUSTION MODEL

Flame structure
RANS → LES

CH2O C2H2

RANS

LES

LES avg
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CONCLUSIONS

On-going work
Pollutant (NOx-Soot) integration in UFPV model
Coupled spray and combustion models

SPRAY COMBUSTION TURBULENCE

CONVENTIONAL LAGRANGIAN 
DDM

SIMPLIFIED 
KINETICS + TCI

RANS

ADVANCED EULERIAN
Σ-Y

DETAILED
KINETICS + UFPV

RANS → LES

Pandal et al., IJMF 99 (2018):257–272
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