HELY ADJOINT

Next-Generation Design Optimisation for Enterprise applied to Internal Combustion Engines

> Paolo Geremia Eugene de Villiers 23 February 2018

engys

About ENGYS

> Global providers of professional quality CFD Products

- Based on Open Source Software (OPENFOAM)
- Driven by innovation
- > Founded in the UK (2009)
 - FOAM/OPENFOAM developers since 1999
- > 6 offices worldwide
 - UK, Germany, Italy, USA, Australia, RSA
- > Well established resellers network
 - Japan, Benelux, Korea, China, USA

- General purpose CFD software suite
- > Enterprise product → professional quality + opensource
- > In production since 2010
- > HELYX-Adjoint → add-on solver module

- General purpose CFD software suite
- > Enterprise product → professional quality + opensource
- > In production since 2010
- > HELYX-Adjoint → add-on solver module

OUTLINE

- 1. What is HELYX-Adjoint?
- 2. Topology Optimisation
- 3. Shape Optimisation
- 4. Conclusions

HELYX-Adjoint | Background

- > Originally commissioned by C. Othmer, VW Research
- > Mission \rightarrow Build a practical adjoint optimisation tool that anyone can use
- > Focus remains on utility
- > Accuracy is important, but not the only concern
- > Performance, ease-of-use, robustness all equally significant
- > Built on HELYX-Core
- > Continuous adjoint
 - Support for industrial problems (> 200M cells)

HELYX-Adjoint | Continuous vs. Discrete

Continuous Adjoint

- Difficult / time consuming derivation from governing equations
- Intuitive numerics, can reuse primal methods
- Gradient accuracy depends on details of implementation
- Highly efficient in terms of run time and RAM usage

Discrete Adjoint

- Manual and/or automatic differentiation of code
- Black-box numerics, optimisation can be challenging
- Produces exact sensitivities (consistent)
- High RAM requirements (taping and/or check-pointing)

HELYX-Adjoint | Continuous Formulation

> CFD computation: v, p \rightarrow primal fields

$$\begin{aligned} \left(\mathbf{v} \cdot \nabla \right) \mathbf{v} &= -\nabla p + \nabla \cdot \left(\nu \, \nabla \mathbf{v} \right) - \alpha \mathbf{v} \\ \nabla \cdot \mathbf{v} &= 0 \end{aligned}$$

> Adjoint CFD computation: u, q \rightarrow "dual" fields

$$-(\nabla \mathbf{u}) \mathbf{v} - (\mathbf{v} \cdot \nabla) \mathbf{u} = -\nabla q + \nabla \cdot (\nu \nabla \mathbf{u}) - \alpha \mathbf{u}$$
$$\nabla \cdot \mathbf{u} = 0$$

> Computation of sensitivities:

- Surface sensitivities
$$\rightarrow \frac{\partial J}{\partial \beta} \sim \frac{\partial \mathbf{v}}{\partial n} \cdot \frac{\partial \mathbf{u}}{\partial n}$$

- Volume sensitivities
$$\rightarrow \frac{\partial J}{\partial \alpha} \sim \mathbf{v} \cdot \mathbf{u}$$

HELYX-Adjoint | Sensitivities

Surface Sensitivities $\partial J/\partial \beta$

red → push surface in blue → push surface out

Volume Sensitivities $\partial J/\partial \alpha$

red → free volume cells blue → penalise volume cells

HELYX-Adjoint | Key Features

- > Multi-objective (> 20 different cost functions)
- > Objective and constraints
 - Manufacturability constraints
- Adjoint turbulence & wall-function
- > 2nd order accurate
- > Easy to use GUI

	HELYX® - Open-source CFD for Enterprise -			- 0	×
File Mesh Setup	Solver				?
initialise Map Delete Add	$\begin{array}{c c} \hline \\ \hline $	Decompose Reconstruct Case Utilitie	s Browser rminal ameters		
Solution	Solution	4	🔍 G_dragMean 🔹 1500.0 💌 🛞 📀 😥 😥 🞲 🚽 🛃 🔘 🖟	P 📍 🗶	
··· Materials	Туре	Time			Ð
6-DoF Body Motion	Coupled	Steady Transient			Q
Boundary Conditions	Flow	Mach			e c
··· ☑ ➡ WT_inlet ··· ☑ ➡ WT_outlet	Compressible	● Low ○ High		G_chagMean	.∝ ₊
WT_ff_miny	Multiphase				1
WT_floor	Off VOF Euler-Euler Hydro Marine	Phases 1		3 3335#+04	1 1 1 1
body_glass	Thermal				#
wheels_rearWheels	Energy			-3 3333e+D4	
Cell Zones	Gravity				5
Numerical Schemes	g (m/s³) 0.0 0.0 -9.81			-1 10000e +05	
Runtime Controls	Adjoint		,∱ x		
Monitoring Functions	Z Adjoint		i i i i i i i i i i i i i i i i i i i	gys	
▼ Custom	Topology Optimisation				
	Scalar Transport		X [-8.08E-1 , 3.80E0] Δ 4.61E0 Y [-1.01E0 , 1.01E0] Δ 2.03E0 Z [-2.90E-1 , 1.10E0] Δ 1.39E0		
HELYX v3.0.0 [2017-09-04] Licens	e: Valid (FLOATING) Machine: REMOTE CLIEN	SERVER - SOFTWARE - OPEN_GL1 [np=2] Run I	Node: LocalRunMode_LINUX Case:	🗐 <mark>1</mark> 80 /	/ 989MB

/home/paolo/Projects/Demo/OptimalSolutions/Camilo/SurfaceMorphing/scratch/tmp/Baseline - Serial - 1 Region - Mesh in '0'

OUTLINE

2. Topology Optimisation

> What is Topology Optimisation?

> Success Stories

- Oil Channel
- Engine Intake Port
- Internal Flows

Topology Optimisation

- Specify design space and inlet/outlet interfaces
- > Define optimisation objectives
- > Calculate volume sensitivities $\rightarrow \partial J/\partial \alpha$
 - Volume cells penalised according to objective function
 - Track "optimum" interface using level-set with immersed boundary
- > Output "smooth" surface optimised shape
- "One-shot" approach

Copyright © 2018 ENGYS Limited. All rights Reserved. Third Two-day Meeting, 22-23 February 2018

Topology Optimisation | Success Story

Oil Channel

Courtesy of Dr. Takeshi Yamaguchi (AISIN AW)

- > Decrease system power losses
- > Improved level-set immersed boundary representation
- > Mitigate recirculation induced local optima

Copyright © 2018 ENGYS Limited. All rights Reserved. Third Two-day Meeting, 22-23 February 2018

Topology Optimisation | Success Story

Oil Channel

- > Optimisation complete in <1hr</p>
- Zero level-set extracted and new design re-meshed
- > ~30% reduction in power losses verified
- HELYX-Adjoint makes optimal design routine

Engine Intake Port

- > Design port flow
- > Targets to achieve:
 - Maximise Mass Flow Rate
 - Maximise Swirl Index $\boldsymbol{\omega}$
- > Compressible flow
- > k- ω SST turbulence model

CENTRO

FIAT

CR

RICERCHE

Engine Intake Port

- > Input data for the project:
 - Number of valves = 2
 - Valve lift = 9mm
- > Targets to achieve:
 - Maximise Mass Flow Rate
 - Maximise Swirl Index $\boldsymbol{\omega}$

$$\omega = \frac{\sum_{v} V_{y} \rho dV \cdot (zV_{x} - xV_{z})}{\sum_{v} \rho dV}$$

Engine Intake Port

- > helyxHexMesh utility
- > Mesh size: 3.6M cells
- > Near-wall layers: 3
- > Target cell size (port arms and valves): 0.4mm

CENTRO

FIAT

RICERCHE

Engine Intake Port

- Design A is the optimal solution for swirl objective
- Design C is the optimal solution for mass flow rate objective
- Design B is a trade-off in terms of both the design objectives and was selected by the as a compromise solution

CENTRO RICERCHF

FIAT

Engine Intake Port

Velocity contour at swirl monitoring plane

Topology Optimisation | Other Examples

Taken from "The Adjoint Method Hits the Road" by C. Othmer [2014]

engys

Copyright © 2018 ENGYS Limited. All rights Reserved. Third Two-day Meeting, 22-23 February 2018

OUTLINE

3. Shape Optimisation

> What is Shape Optimisation?

>Morphing

- > Success Stories
 - Exhaust Port
 - Manifold Optimisation

Shape Optimisation

- Based on steady RANS or time averaged primal (LES/DES)
- Morph design using HELYX morphing solutions:
 - Node-based deformation
 - Volumetric NURBS deformation
- > Morphing using 3rd-party tools:
 - ANSA, Sculptor, CAMILO, etc.

р

Node-based Deformation

- > Implicit smoothing
- > Mesh optimisation for improved deformation

© Copyright 2018 ENGYS Limited. All rights reserved.

Node-based Deformation

> Smooth for vector $\vec{d} = \vec{G} \cdot \vec{n}$

> Smooth the magnitude of the displacement $\vec{d} - \varepsilon \nabla^2 \vec{d} = \overrightarrow{d_{init}}$ $\overrightarrow{d_{init}}$: Initial Field, \vec{d} : Smooth Field, ε : smoothing intensity

Smoothing radius of 3cm. Courtesy of FCA

Gsmooth 0.2 -0.1 0 0.1 0.2

Courtesy of Rolls Royce

© Copyright 2018 ENGYS Limited. All rights reserved.

Node-based Deformation Define Constraint Patches & Insert Shape **Smoothing Radius Sensitivity Adjoint** Surface **Primal Solution** Deformation **Smoothing** Solution In-house Morpher Surface Mesh **Mesh adaptation** Converge Regularization Take Optimal Shape

vNurbs Deformation

- Points construct lattices (topological cubes)
- > Two step procedure:
 - Training (Mapping the mesh to the control point structure)
 - Deforming (Displacing the control points and the mesh, based on the map created)

vNurbs Deformation

> Input:

- Number of control points in U, V, W directions
- Polynomial degree in U, V, W direction
- > Boundary control points can stay fixed to ensure C_0 and C_1 continuity
- > Coupling with the adjoint:
 - Sensitivities can be mapped to the control point structure just like the mesh
 - Control point sensitivities can be used with an optimizer to perform optimization

Success Story | Volkswagen Group

Exhaust Port

- Exhaust port modification for increased flow rate
- > Shape optimisation → modify geometry based on surface sensitivities
- > Design objective:
 - Maximum flow rate

Taken from "The Adjoint Method Hits the Road" by C. Othmer [2014]

Success Story | Volkswagen Group

Exhaust Port

Taken from "The Adjoint Method Hits the Road" by C. Othmer [2014]

- HELYX-Adjoint employed to produce a duct configuration with maximum flow uniformity on a manifold lower end
- > Three different approaches employed:
 - Surface shape optimisation
 - Volume topology optimisation
 - Topology + Shape optimisation

Manifold Optimisation

> Fluid :

- Air @ 20°C
- $-\rho = 1.204 \text{ kg/m3}$
- μ= 1.812e-5 Pa·s
- > Incompressible flow
- > Inlet volumetric flow rate = 450 kg/h
- > Outlet reference pressure = 101325 Pa

> Design Objective:

 Maximisation of flow uniformity by measuring the average mass flow rate on 7 outlet cells on the manifold lower end

- > Shape Optimisation Workflow:
 - 1. Evaluate the adjoint surface sensitivities on the baseline shape provided by Röchling
 - 2. Apply a free-form lattice-based mesh deformation morphing tool available in HELYX
 - 3. Calculate the new adjoint surface sensitivities
 - 4. Repeat 2-3 until an optimal shape is found

- > Topology Optimisation Workflow
 - 1. Evaluate the adjoint volume sensitivities on the packaging space provided by Röchling
 - 2. Employ a level-set engine to track optimal solid-fluid interface
 - 3. Apply interface curvature limitation to produce a smooth duct surface with manufacturing potential
 - 4. Get a final smooth optimised interface

- > Topology + Shape Optimisation Workflow:
 - 1. Run the topology optimisation worflow
 - 2. Apply a free-form lattice-based mesh deformation morphing tool available in HELYX on the optimised shape obtained in (1)
 - 3. Calculate the new adjoint surface sensitivities
 - 4. Repeat 2-3 until an optimal shape is found

Manifold Optimisation

engys

© Copyright 2018 ENGYS Limited. All rights reserved.

Manifold Optimisation

Shape optimisation optimal surface

Topology optimisation optimal surface

Topology+Shape optimisation optimal surface

OUTLINE

4. Conclusions

> Conclusions
> Acknowledgements
> Questions?

Conclusions

- A unique continuous adjoint formulation for topology and shape optimisation developed by ENGYS was presented
- > Fully validated and deployed in industrial settings
- > Professional solution available in the HELYX-Adjoint add-on module
- > Unparalleled efficiency in design optimisation for fluid systems
- > Large cases (200M+) cases can be handled by HELYX[®] Adjoint
- > Automatic surface morphing for advanced shape optimisation
- > Fully open-source solution

Acknowledgements

> Volkswagen

- VW Research: C. Othmer
- VW Methods Development: D. Schraeder
- VW Engine Development: W. Py
- > Aboutflow MC-ITN http://aboutflow.sems.qmul.ac.uk
 - Adjoint-Based optimization of industrial and unsteady flows

"This project has received funding from the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement No. 317006".

> IODA MSCA-ITN-ETN - http://ioda.sems.qmul.ac.uk/

– Industrial Optimal Design using Adjoint CFD

"This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 642959".

Questions?

THANK YOU VERY MUCH!

engys

Copyright © 2018 ENGYS Limited. All rights Reserved. Third Two-day Meeting, 22-23 February 2018