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1) Modeling approaches for SI combustion developed using the 
Open-FOAM® technology

a) Eulerian-only

b) Lagrangian-Eulerian

2) SI combustion simulation of diluted mixtures

a) Applications

b) Validations



The Eulerian-only model for SI combustion 
SI combustion engine modeling using the Open-FOAM® technology

Comprehensive CFD model



The Lagrangian-Eulerian model for SI combustion 
SI combustion engine modeling using the Open-FOAM® technology

Comprehensive CFD model



SI combustion simulation of diluted mixtures
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 Research engines
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 Pressurized vessels

Applications

 Multi-ignition systems

 Fan-generated flow 
velocity and turbulence 
fields at the spark-gap

Chiba University vessel

 Research engines

Spark-plug
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Flow 
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Use of a simplified geometry:

 To reduce computational times

 To avoid possible numerical 
instabilities

Spark-plug

𝑼
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Lagrangian-Eulerian model 
for SI combustion
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 Michigan Tech University vessel

Validations

 Chiba University vessel

 Herweg-Maly side chamber

 Chiba University vessel

 Herweg-Maly side chamber
Test Charged gas P (bar) T (K) ρ (kg/m3) n (rpm)

2
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 3000

3
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 6000

6
Ф = 0.7

𝐸𝐺𝑅 = 20%
16 453 12.42 3000

9
Ф = 0.9

𝐸𝐺𝑅 = 20%
8 453 6.33 6000

Analyzed conditions

 Fuel: Propane  𝑘 − ω 𝑆𝑆𝑇 turbulence model 
with RANS approach

Lean mixtures with EGR



 Chiba University vessel

 Herweg-Maly side chamber
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 Michigan Tech University vessel

Validations
Test Charged gas P (bar) T (K) ρ (kg/m3) n (rpm)

2
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 3000

3
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 6000

6
Ф = 0.7

𝐸𝐺𝑅 = 20%
16 453 12.42 3000

9
Ф = 0.9

𝐸𝐺𝑅 = 20%
8 453 6.33 6000

Analyzed conditions

Investigation target

a) Turbulence intensity 𝒖′ b) Equivalence ratio 𝝓 c) Pressure 𝑷

Assessing the model behavior under variations of:
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Test Charged gas P (bar) T (K) ρ (kg/m3) n (rpm)

2
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 3000

3
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 6000

6
Ф = 0.7

𝐸𝐺𝑅 = 20%
16 453 12.42 3000

9
Ф = 0.9

𝐸𝐺𝑅 = 20%
8 453 6.33 6000

Analyzed conditions

Investigation target

a) Flame front position b) Burnt mass

Numerical investigation on:

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations



Expected behaviors
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a) ↑ 𝒖′ b) ↑ 𝝓 c) ↑ 𝑷

Form experimental observations and well known knowledge, an ↑ flame front velocity is achieved under:

Test Charged gas P (bar) T (K) ρ (kg/m3) n (rpm)

2
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 3000

3
Ф = 0.7

𝐸𝐺𝑅 = 20%
8 453 6.21 6000

6
Ф = 0.7

𝐸𝐺𝑅 = 20%
16 453 12.42 3000

9
Ф = 0.9

𝐸𝐺𝑅 = 20%
8 453 6.33 6000

Analyzed conditions

↑ flame 
speed↑ flame 

speed

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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 Lagrangian-Eulerian coupling 
active until complete consumption 
of Electrical Circuit energy 

 Lagrangian particles 
dimension artificially 
decreased by a factor of 10

Chance to appreciate the effects of local flow filed on channel geometry

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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Flame stretch

𝑰𝟎 =
𝒔𝒖
𝒔𝒖𝟎

Definition

 Important 
contribution during 
the initial stage of 
kernel growth 
(𝐼0,𝑚𝑎𝑥 ≈ 0.6)

 Self-sustained 
flame front

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations



 Le slightly changes according to

a) Temperature 𝑇

b) Pressure 𝑃
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Lewis number

 Intermediate values between

a) 𝐿𝑒𝐶3𝐻8 ≈ 1.8

b) 𝐿𝑒𝐴𝑖𝑟 ≈ 1.0

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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Flame front position
Numerical Experimental

𝒖′

variation

𝑷
variation

𝝓
variation

↑ flame speed is achieved with
↑ 𝒖′, ↑ 𝝓 and ↑ 𝑷

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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Burnt mass

𝒖′

variation
𝝓

variation

𝑷
variation

Numerical 
results onlySame trends are confirmed

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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Analyzed conditions

 ф = 𝟏

 𝑬𝑮𝑹 = 𝟑𝟎%
(hypothesis of 100% 𝑁2)

 Fuel: Propane

 𝑃 = 2 𝑏𝑎𝑟

 𝑈𝑠𝑝𝑎𝑟𝑘−𝑔𝑎𝑝 ≈ 10  𝑚 𝑠

 𝑇 ≈ 300 𝐾

 𝑘 − ω 𝑆𝑆𝑇
turbulence model 
with RANS approach

 ф = 𝟎. 𝟕

 𝑬𝑮𝑹 = 𝟎%
(hypothesis of 100% 𝑁2)

Stoichiometric mixture 
with EGR

Lean mixture

Lagrangian-Eulerian model 
for SI combustion

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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Investigation target

Numerical prediction of:

a) Voltage 𝑉𝑠 trend

b) Plasma channel shape

c) Flame area after 1 𝑚𝑠
from spark onset 

Expected behaviors

Experimental imposition of:

a) the secondary current 𝑖𝑠
trend

b) a variation in initial 
secondary current value 𝑖𝑠

From several experimental observations, an ↑ 𝒊𝒔 corresponds to: 

a) ↓  𝒅𝑽𝒔 𝒅𝒕, with a consequent longer 1st discharge duration

b) ↑ 𝒍𝒄𝒉𝒂𝒏𝒏𝒆𝒍 and ↑ 𝒅𝒄𝒉𝒂𝒏𝒏𝒆𝒍

c) ↑ flame area after 1 𝑚𝑠 from spark onset 

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations



SI combustion simulation of diluted mixtures
SI combustion engine modeling using the Open-FOAM® technology

Voltage trend

Stoichiometric mixture 
with EGR

ф = 𝟏 𝑬𝑮𝑹 = 𝟑𝟎%
(hypothesis of 100% 𝑁2)

Numerical Experimental

Initial ↑ 𝒊𝒔 corresponds to ↓  𝒅𝑽𝒔 𝒅𝒕

↑ 𝒊𝒔 ↑ 𝒊𝒔

↓
𝒅𝑽𝒔
𝒅𝒕

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations

↓
𝒅𝑽𝒔
𝒅𝒕
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Voltage trend

Numerical 
results

Same trend is confirmed

↑ 𝒊𝒔 ↑ 𝒊𝒔

Stoichiometric mixture with EGR Lean mixture

↓
𝒅𝑽𝒔
𝒅𝒕

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations

↓
𝒅𝑽𝒔
𝒅𝒕
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↑ 𝒊𝒔

Stoichiometric mixture with EGR Lean mixture

Plasma channel shape

↑ 𝒍𝒄𝒉𝒂𝒏𝒏𝒆𝒍 and   ↑ 𝒅𝒄𝒉𝒂𝒏𝒏𝒆𝒍

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
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Plasma channel shape

Lean 
mixture

𝐭𝐢𝐦𝐞 [𝐦𝐬] 𝐭𝐢𝐦𝐞 [𝐦𝐬]

↑ 𝒊𝒔 ↑ 𝒊𝒔

↑ 𝒊𝒔 ↑ 𝒊𝒔

Numerical results

Initial ↑ 𝒊𝒔 corresponds to 
↑ 𝒍𝒄𝒉𝒂𝒏𝒏𝒆𝒍 and   ↑ 𝒅𝒄𝒉𝒂𝒏𝒏𝒆𝒍

Low Current
Medium Current
High Current

Low Current
Medium Current
High Current

Low Current
Medium Current
High Current

Low Current
Medium Current
High Current

𝒍 𝒄
𝒉
𝒂
𝒏
𝒏
𝒆
𝒍
[m

m
]

𝒅
𝒄
𝒉
𝒂
𝒏
𝒏
𝒆
𝒍
[m

m
]

Stoich. 
mixture 

with EGR

𝒅𝒄𝒉𝒂𝒏𝒏𝒆𝒍

𝒍𝒄𝒉𝒂𝒏𝒏𝒆𝒍

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations



Flame area after 𝟏𝒎𝒔 from spark onset 
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Stoichiometric mixture with EGR Lean mixture

↑ 𝒊𝒔

“Visual” comparison

Numerical results seem to agree 
with experimental findings 

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations



SI combustion simulation of diluted mixtures
SI combustion engine modeling using the Open-FOAM® technology

Flame area after 𝟏𝒎𝒔 from spark onset 

Numerical Experimental

Initial ↑ 𝒊𝒔 corresponds to 
↑ flame area after 1 𝑚𝑠 from spark onset 

↑ 𝒊𝒔 → ↑ released energy
Lean 

mixture

Stoich. 
mixture 

with EGR

↑ 𝒊𝒔 ↑ 𝒊𝒔

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations



Eulerian-only model 
for SI combustion
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 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations
Analyzed conditions

 Fuel: Propane

 𝑃𝑠𝑝𝑎𝑟𝑘−𝑡𝑖𝑚𝑖𝑛𝑔 = 5 𝑏𝑎𝑟

 Ignition location: 
central, peripheral

 𝑇𝐼𝑉𝐶 ≈ 300 𝐾

 𝑘 − ω 𝑆𝑆𝑇 turbulence 
model with RANS approach

 𝐼𝑉𝐶 = −168 𝐶𝐴𝐷

 Spark-timing = −10 𝐶𝐴𝐷

 ф = 𝟎. 𝟔𝟕, 𝟎. 𝟕𝟕, 𝟏

 𝑬𝑮𝑹 = 𝟎% (hypothesis of 100% 𝑁2)

 𝒔𝒑𝒆𝒆𝒅 = 𝟑𝟎𝟎, 𝟓𝟎𝟎, 𝟕𝟓𝟎, 𝟏𝟎𝟎𝟎, 𝟏𝟐𝟓𝟎 𝒓𝒑𝒎

Lean to stoichiometric mixtures
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Investigation target

Numerical investigation on:

a) Cold-flow, in order to 
evaluate 𝑼 and 𝒖′

prediction 

b) Flame burnt volume

Expected behaviors

Assessing the model behavior 
under variations of:

a) Equivalence ratio 𝝓

b) Turbulence intensity 𝒖′

c) Ignition location

Form experimental observations and well known knowledge, 
an ↑ flame front velocity is achieved under: 

b) ↑ 𝝓a) ↑ 𝒖′

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations

Ing. Federico Clerici 
M.Sc. thesis work



≈ 𝟓𝟎% of 
𝒖′

 𝑼𝒑𝒊𝒔𝒕𝒐𝒏
overestimation
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Cold flow

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations

Ing. Federico Clerici 
M.Sc. thesis work

 
𝑈
𝑓
𝑙𝑜
𝑤

 𝑈
𝑝
𝑖𝑠
𝑡𝑜
𝑛

 
𝑢
′
 𝑈
𝑝
𝑖𝑠
𝑡𝑜
𝑛

𝐶𝐴 [𝑑𝑒𝑔] 𝐶𝐴 [𝑑𝑒𝑔]

Normalized 𝑼𝒇𝒍𝒐𝒘 Normalized 𝒖′

≈ 20% of 
𝑈𝑓𝑙𝑜𝑤
 𝑈𝑝𝑖𝑠𝑡𝑜𝑛

undersetimation

Legend:
 Num. data
 Exp. data

Spark-timing

If ↑ 𝒓𝒑𝒎 𝑢𝑛𝑢𝑚
′ − 𝑢𝑒𝑥𝑝

′ ↑

If ↓ 𝒓𝒑𝒎 𝑢𝑛𝑢𝑚
′ − 𝑢𝑒𝑥𝑝

′ ↓

↑ numerical flame front speed  

↓ numerical flame front speed  
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Flame burnt volume

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations

Model calibration at:

Ing. Federico Clerici 
M.Sc. thesis work

𝒔𝒑𝒆𝒆𝒅 = 𝟕𝟓𝟎 𝒓𝒑𝒎ф = 𝟏

ф = 𝟏 ф = 𝟎. 𝟕𝟕 ф = 𝟎. 𝟔𝟕

Time after ignition [ms] Time after ignition [ms] Time after ignition [ms]
𝟎. 𝟕𝟗𝒎𝒔 𝟎. 𝟖𝟑 𝒎𝒔 𝟏. 𝟏𝟓 𝒎𝒔

↑ flame front velocity is achieved 
under an ↑ 𝝓

Model calibration at:
𝒔𝒑𝒆𝒆𝒅 = 𝟕𝟓𝟎 𝒓𝒑𝒎ф = 𝟏



Legend:
 Num. data

 Exp. Data
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Flame burnt volume

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations

Model calibration at:

Ing. Federico Clerici 
M.Sc. thesis work

𝒔𝒑𝒆𝒆𝒅 = 𝟕𝟓𝟎 𝒓𝒑𝒎ф = 𝟏

ф = 𝟏

Time after ignition [ms]

↑ flame front velocity is achieved 
under an ↑ 𝒖′

↑ 𝒓𝒑𝒎
↑ 𝒖′

As expected, 
if ↑ 𝒓𝒑𝒎

𝑢𝑛𝑢𝑚
′ − 𝑢𝑒𝑥𝑝

′ ↑
↑ numerical flame 

front speed  
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Flame burnt volume

 Michigan Tech University vessel

 Chiba University vessel

 Herweg-Maly side chamber

Validations

Model calibration at:

Ing. Federico Clerici 
M.Sc. thesis work

𝒔𝒑𝒆𝒆𝒅 = 𝟕𝟓𝟎 𝒓𝒑𝒎ф = 𝟏

Peripheral ignitionCentral ignition

Peripheral ignitionCentral ignition

Time after ignition [ms]Time after ignition [ms]𝟎. 𝟗𝟓 𝒎𝒔 𝟎. 𝟕𝟓 𝒎𝒔

↑ flame front velocity is achieved going to peripheral ignition,
because ↑ 𝒖′ when ↑ 𝒓𝒔𝒊𝒅𝒆 𝒄𝒉𝒂𝒎𝒃𝒆𝒓



Conclusions
SI combustion engine modeling using the Open-FOAM® technology

 The developed modeling approaches for SI combustion allow to 
model with different complexities the ignition stage

b) ↑ detail  → Lagrangian-Eulerian model 

a) ↓ detail  → Eulerian-only model Useful to fulfill 
different requests

 The proposed approaches are validated for simulating 
diluted mixture conditions



 The Lagrangian-Eulerian model is ready to be tested on research 
engines conditions, in order to study innovative:

a) Ignition strategies

b) Combustion modes

Future developments
SI combustion engine modeling using the Open-FOAM® technology

 The Eulerian-only model can be exploited to provide more insight 
on innovative Air-Fuel mixtures combustion:

a) with low computational costs

b) where the first target is to understand the turbulent 
combustion stage

Strongly diluted and 
stratified mixtures

Low-carbon fuels
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