Application and validation of combustion models for SI engines operating with diluted mixtures

Lorenzo Sforza, Tommaso Lucchini Politecnico di Milano (Italy)

Takayuki Hori, Taisuke Shiraishi Nissan Motor Co. (Japan)

Outline

- 1) Modeling approaches for SI combustion developed using the Open-FOAM[®] technology
 - a) Eulerian-only
 - b) Lagrangian-Eulerian
- 2) SI combustion simulation of diluted mixtures
 - a) Applications
 - b) Validations

The Eulerian-only model for SI combustion

The Lagrangian-Eulerian model for SI combustion

SI combustion engine modeling using the Open-FOAM® technology

- Pressurized vessels
- Multi-ignition systems
- Fan-generated flow velocity and turbulence fields at the spark-gap
- Research engines

SI combustion engine modeling using the Open-FOAM[®] technology

- Pressurized vessels
- Multi-ignition systems
- Fan-generated flow velocity and turbulence fields at the spark-gap
- Research engines

SI combustion engine modeling using the Open-FOAM[®] technology

- Pressurized vessels
- Multi-ignition systems
- Fan-generated flow velocity and turbulence fields at the spark-gap
- Research engines

SI combustion engine modeling using the Open-FOAM[®] technology

- Pressurized vessels
- Multi-ignition systems
- Fan-generated flow velocity and turbulence fields at the spark-gap
- Research engines

SI combustion engine modeling using the Open-FOAM[®] technology

- Pressurized vessels
- Multi-ignition systems
- Fan-generated flow velocity and turbulence fields at the spark-gap
- Research engines

SI combustion engine modeling using the Open-FOAM[®] technology

Applications

- Pressurized vessels
- Multi-ignition systems
- Fan-generated flow velocity and turbulence fields at the spark-gap

Research engines

SI combustion engine modeling using the Open-FOAM[®] technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

Lagrangian-Eulerian model for SI combustion

SI combustion engine modeling using the Open-FOAM[®] technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

Test	Charged gas	P (bar)	Т (К)	ρ (kg/m3)	n (rpm)
2	$\Phi = 0.7$ EGR = 20%	8	453	6.21	3000
3	$\Phi = 0.7$ EGR = 20%	8	453	6.21	6000
6	$\Phi = 0.7$ EGR = 20%	16	453	12.42	3000
9	$\Phi = 0.9$ EGR = 20%	8	453	6.33	6000

Analyzed conditions

Investigation target

- Numerical investigation on:
- a) Flame front position

b) Burnt mass

SI combustion engine modeling using the Open-FOAM[®] technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

Expected behaviors

Form experimental observations and well known knowledge, an \uparrow flame front velocity is achieved under:

a) $\uparrow \boldsymbol{u}'$ b) $\uparrow \boldsymbol{\phi}$ c) $\uparrow \boldsymbol{P}$

Analyzed conditions

SI combustion engine modeling using the Open-FOAM® technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber
- Lagrangian <u>particles</u> <u>dimension artificially</u> <u>decreased</u> by a factor of 10 tion

Chance to appreciate the effects of local flow filed on channel geometry

SI combustion engine modeling using the Open-FOAM[®] technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

- a) $Le_{C_3H_8} \approx 1.8$
- b) $Le_{Air} \approx 1.0$

SI combustion engine modeling using the Open-FOAM[®] technology

- Chiba University vessel
- Herweg-Maly side chamber

Same trends are confirmed

SI combustion engine modeling using the Open-FOAM[®] technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

Lagrangian-Eulerian model for SI combustion

SI combustion engine modeling using the Open-FOAM[®] technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

- a) $\downarrow dV_s/dt$, with a consequent longer 1st discharge duration
- b) $\uparrow l_{channel}$ and $\uparrow d_{channel}$
- c) 1 *flame area* after 1 *ms* from spark onset

SI combustion engine modeling using the Open-FOAM® technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

SI combustion engine modeling using the Open-FOAM® technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

"Visual" comparison

Numerical results **seem to agree** with *experimental findings*

SI combustion engine modeling using the Open-FOAM[®] technology

Validations

- Michigan Tech University vessel
- \triangleright Chiba University vessel
- Herweg-Maly side chamber

↑ released energy $\hat{i}_{s} \rightarrow$

Initial $\uparrow i_s$ corresponds to ↑ *flame area* after 1 *ms* from spark onset

120

100

SI combustion engine modeling using the Open-FOAM® technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

Eulerian-only model for SI combustion

SI combustion engine modeling using the Open-FOAM® technology

Validations

- Michigan Tech University vessel
- Chiba University vessel
- Herweg-Maly side chamber

Ing. Federico Clerici M.Sc. thesis work

Expected behaviors

Form experimental observations and well known knowledge, an \uparrow flame front velocity is achieved under:

a)
$$\uparrow u'$$
 b) $\uparrow \phi$

Conclusions

SI combustion engine modeling using the Open-FOAM[®] technology

- The developed modeling approaches for SI combustion allow to model with different complexities the ignition stage
 - a) \downarrow detail \rightarrow *Eulerian-only* model
 - b) \uparrow detail \rightarrow *Lagrangian-Eulerian* model

Useful to fulfill different requests

The proposed approaches are validated for simulating diluted mixture conditions

Future developments

SI combustion engine modeling using the Open-FOAM[®] technology

- The Lagrangian-Eulerian model is ready to be tested on research engines conditions, in order to study innovative:
 - a) Ignition strategies
 - b) Combustion modes

b)

Strongly diluted and stratified mixtures

The Eulerian-only model can be exploited to provide more insight on innovative Air-Fuel mixtures combustion:

where the *first target* is to understand the *turbulent*

a) with *low computational costs*

combustion stage

Low-carbon fuels

Thank you for your attention!

Lorenzo Sforza, M.Sc.

PhD candidate

Address: Via Lambruschini, 4a - 20156 Milano - Politecnico di Milano - Italy

- E-mail: *lorenzo.sforza@polimi.it*
- Phone: +39 02 2399 3909

Web-site: http://www.engines.polimi.it

