Modeling the after-treatment system of Diesel and S.I. internal combustion engines by means of OpenFOAM

> **G. Montenegro, A. Della Torre, A. Onorati** Internal Combustion Engine Group Department of Energy, Politecnico di Milano

Outline

- Introduction
- Etherogeneous reaction modeling
 - microstructure (surface reaction)
 - macroscale
- Spray-wall interaction for DEF injection
 - Spray impingment: kinetic and thermal models
 - Wall film formation
- Optimization framework
- Industrial cases
- Work in progress

Main concept: applied to ICE

Introduction Previous work: micro-scale modelling

near wall gas washcoat solid wall

Introduction Full scale modeling

FULL SCALE MODELING

Implementation CFD macro-scale model for ATS simulations

Implementation Submodel for ATS simulations

Macro-scale model:

- multi-region framework
- coupling between zones on different fluid or solid meshes

Coupling between fluid and solid regions requires specific models:

- Geometry model
- Permeability model
- Heat transfer models (conduction, convection)
- Mass transfer model
- Reaction models

Information for the setup of the models are obtained by microscale simulations or experimental correlations.

Simulation Validation of the full model: 1D case DOC

Simulation Validation of the full model: 1D case DOC

Simulation Application to the simulation of a real ATS system

Full-scale 3D case including DOC monolith and electrical heating

- a. Simulation of uniform electrical heating
- b. Simulation of non-uniform electrical heating

Simulation Application to the simulation of a real ATS system

Simulation Application to the simulation of a real ATS system

A specific model has been implemented to take into account the non uniform distribution of the heat generated in the metallic eHC

Phenomenological model:

- Each spiral has a high T side and a low T side
- Non-uniformity decreases from center to boundary
- No heating at the boundary (short circuit)

Spatial distribution for the heat release

Application to the simulation of a real ATS system DOC configuration with non-uniform heating

Application to the simulation of a real ATS system DOC configuration with uniform heating

Application to the simulation of a real ATS system DOC configuration with non-uniform heating

3D model DOC: comparison uniform vs non-uniform heating

3D model TWC: implementation of Koltsakis model

0.0

¯ H₂+0.5O₂ -> H₂Ο $C_{3}H_{6} + 3O_{2} -> 3CO_{2} + 6H_{2}O_{2}$ $^{\circ}$ CO+NO -> CO₂+0.5N₂ ["] H₂+NO -> H₂O + 0.5N₂

Steam water reforming $CO+H_2O \rightarrow CO_2 + H_2$ $C_3H_6 + 3H_2O \rightarrow 3CO_2 + 6H_2$

3D model TWC: comparison of different substrate types

- NEDC cycle of a 2.0 L engine, 4 Cyl, naturally aspirated
- Measured exhaust gas T and mass flow and the engine flange as BC.
- Open cell foam properties from micro scale simulations

3D model TWC: comparison of different substrate types

HONEYCOMB

OPEN CELL FOAM

3D model TWC: comparison of different substrate types

• NEDC cycle (first 300 seconds) with two different technologies

SPRAY & WALL FILM MODELING

Spray modeling Thermal aspects of spray-wall interaction

Extension of standard impingement regimes

- a. Review of rebound models
- b. Thermal aspect taken into account

Spray modeling Thermal aspects of spray-wall interaction

Spray modeling Thermal aspects of spray-wall interaction

- CHT on dry wall
- The temperature drop before the wetting condition is predicted

Wall film modeling **Solution of the liquid film**

$$\begin{split} \frac{\partial hY_{f,k}}{\partial t} + \nabla \cdot (h\vec{u}_f Y_{f,k}) &= S_{M,k} + S_{V,k} \\ \frac{\partial h\vec{u}_f}{\partial t} + \nabla \cdot (h\vec{u}_f\vec{u}_f) &= -\frac{1}{\rho_f}\nabla (hp_f) + \vec{\tau}_g - \vec{\tau}_w + h\vec{g} + \vec{S}_U \\ \frac{\partial h\hat{H}_{s,f}}{\partial t} + \nabla \cdot \left(h\vec{u}_f\hat{H}_{s,f}\right) &= j_g - j_w + S_H \end{split}$$

- Film stripping model triggered when the inertial forces exceed the surface tension ones.
- Gravitational acceleration is also taken into account.
- Minumum parcel mass and capability to store mass to guarantee mass continuity
- User selectable diameter distribution for stripped parcels

Wall film modeling **Solution of the liquid film**

- Arienti test case for validation of film formation/dragging and film stripping
- Heat transfer between wall, film and surrounding gas.
- CHT has not been considered

Spray modeling Dynamic aspects of spray-wall interaction

Comparison between unsteady and frozen flow impingement reveals relevant differences due to flow fluctuations.

OPTIMIZATION FRAMEWORK

Optimization framework Optimization procedure

Geometrical optimization of the mixer **Optimization: DOE**

WORK IN PROGRESS

Work in progress Channel scale DPF/GPF or CAT

- Channel representation is needed for fluid-dynaic and acoustic simulation
- The monolith is divided in sectors and where fluid-dynamic equations are solved on a single representative couple of channels.
- Fluxes are mapped on the remaining portion of the sector not connected to the representative channel.

Work in progress **Channel scale DPF/GPF or CAT**

Conclusions

- Models for macro-scale and micro-scale simulation of complex aftertreatment devices have been implemented and are fully integrated.
- The macro scale model is based on a **multi-region framework** with overlapping fluid and solid meshes to describe the phenomena occurring in the catalytic substrates:
 - Heat transfer
 - Mass transfer
 - Catalytic reactions
- Integration with spray and wall film models for the simulation of complete ATS.
- Finally, the OpenFOAM model can be easily embedded in an **optimization procedure** to address geometry or parameter optimization.

Acknowledgment

- Ing. Filippo Pavirani
- Dr. Lorenzo Nocivelli
- DI John Campbell and Dr. Nicola Rapetto FPT
- Dr. Panayotis Dimpoulos Eggenschwiler EMPA, Zurich

