Incorporation of Flamelet Generated Manifold Combustion Closure to OpenFOAM and Lib-ICE
Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine
- Conclusions
Contents:

➤ Introduction to Chemistry Reduction Methods
➤ FGM Implementation to OpenFOAM and Lib-ICE
➤ Case Study
 • Constant Volume Vessel | ECN Spray A
 • Light Duty Diesel Engine | ECN Spray B
 • Heavy Duty Diesel Engine | Sandia Engine
➤ Conclusions
Introduction to Chemistry Reduction Methods

Chemical Kinetics of Reactive Flows

- Result in system of stiff ODE and solution for reaction rates requires specific mathematical algorithms.
- Hinders prospective CFD simulations of reactive flows.
Introduction to Chemistry Reduction Methods

Chemistry Tabulation vs on-the-fly Chemistry

- No integration for Chemistry
- Look up routines for updating sources

- Direct integration for chemistry
- Sources update after chemistry integration

Progress Variable approach

Flame Types:

- **Perfectly Stirred Reactor**
- **Approximated Diffusion Flamelet**
- **Flamelet Generated Manifolds**

Developed at TU/e
Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine
- Conclusions
Flamelet Generated Manifolds

CHEM1D: 1D flamelet solver code:

- Adaptive gridding
- Implicit solver
- Timestepper (real /false)
- Flexible inlet composition
- CHEMKIN III compatible
- Thermal diffusion
- Transport modelling
- Unity Lewis numbers
- Constant Lewis numbers
- Different Flame Types
- Mixture average

www.fgm-combustion.org

The Simulation of Flat Flames with Detailed and Reduced Chemical Models, Bart Somers
FGM Implementation to OpenFOAM and Lib-ICE

Tabulation of counter flow flamelets for Reacting Sprays

Reaction Space – flamelet solver

- CHEM1D solver code was used for flamelet generation.

\[
\frac{\partial \rho}{\partial t} + \rho \frac{\partial u}{\partial x} = -\rho K \\
\frac{\partial \rho Y_n}{\partial t} + \rho \frac{\partial u Y_n}{\partial x} = \frac{\partial}{\partial x} \left(\rho D \frac{\partial Y_n}{\partial x} \right) + \omega_n - \rho K Y_n \\
\frac{\partial \rho h}{\partial t} + \rho \frac{\partial u h}{\partial x} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial h}{\partial x} \right) - \rho Kh
\]

- CHEM1D:
 Includes different Flame Types:
 FREE, BURNERSTABILIZED, COUNTERFLOW, BIO, and …

Transport:
UNITY LEWIS, CONSTANT/VARIABLE LEWIS
FGM Implementation to OpenFOAM and Lib-ICE

Reaction Space

1D flamelets

Temperature [K]

bash script for parallel flamelet generation

Frozen Flamelet Method, FFM for IC Engine applications

CFD

CHEM1D

MATLAB scripts

FGM table

Needed format for table data

Table dimensions parametrization & interpolation

Variable definition & calculation

Unsteady flamelets
Equilibrium lines
Mixing line

Flame
Oxidizer
Fuel
FGM Implementation to OpenFOAM and Lib-ICE

Lib-ICE:
- Flamelet CFD solver for reacting spray and IC engine
- Source code for table dimensions and data handling

Dimensions for tabulation of chemistry can be:

- **Progress variable**
- **Mixture fraction**
- **Unburned Temperature**
- **Pressure**
- **Segregated Mixture Fraction**
- **Segregated Progress variable**
- **Scalar Dissipation Rate**

4D Tables for IC Engines:

- 1D: \(C \)
- 2D: \(Z \)
- 3D: \(T_u \)
- 4D: \(c_2 \)
- 6D: \(Z_2 \)
- 7D: \(\chi \)
FGM Implementation to OpenFOAM and Lib-ICE

Reaction Space

1D flamelets

1

Tabulated Chemistry

4D-FGM

Source term from FGM tables

\[
\frac{\partial \rho C}{\partial t} + \frac{\partial \rho u C}{\partial x} = \frac{\partial}{\partial x} \left(\frac{\mu_t}{Sc_t} \frac{\partial C}{\partial x} \right) + \rho \dot{C}
\]

Variable Pressure & Unburned Temperature

FGMFlameletLibrary class was incorporated to the Lib-ICE source
FGM Implementation to OpenFOAM and Lib-ICE

1. Reaction Space
 1D flamelets

2. Transport of \(c \) and \(Z \) Fields

3. \(c, Z, P, \) Tu from CFD to Table

4. cdot from Table to Update CFD
Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine
- Conclusions
Case Study: Constant Volume Vessel | ECN Spray A

Experimental configuration

Specifications for Spray A of the ECN

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel injector</td>
<td>Bosch</td>
</tr>
<tr>
<td>Orifice diameter</td>
<td>0.090 mm</td>
</tr>
<tr>
<td>Nozzle K factor</td>
<td>K = 1.5</td>
</tr>
<tr>
<td>Nozzle shaping</td>
<td>Smoothed</td>
</tr>
<tr>
<td>Mini-sac volume</td>
<td>0.2 mm³</td>
</tr>
<tr>
<td>Discharge coefficient</td>
<td>C_d = 0.86</td>
</tr>
<tr>
<td>Number of holes</td>
<td>single hole</td>
</tr>
<tr>
<td>Orifice orientation</td>
<td>Axial</td>
</tr>
</tbody>
</table>

Non-reacting: Liquid/vapor pen. and Mixture Fraction distribution

Reacting: Ignition delay and Flame Lift-off

Large set of experimental and numerical data for non-reacting and reacting operating conditions
Case Study: Constant Volume Vessel | ECN Spray A

Non-reacting: Liquid/vapor penetration and Mixture Fraction distribution

Baseline operating condition

<table>
<thead>
<tr>
<th>2D computational mesh</th>
</tr>
</thead>
<tbody>
<tr>
<td>CFD setup</td>
</tr>
<tr>
<td>• Injection: blob</td>
</tr>
<tr>
<td>• Breakup: KHRT</td>
</tr>
<tr>
<td>• Evaporation: Spalding</td>
</tr>
<tr>
<td>• Turbulence model: standard k-ε with modified C₁</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Test conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Fuel n-dodecane</td>
</tr>
<tr>
<td>• Nozzle diameter: 90 μm</td>
</tr>
<tr>
<td>• p_{inj}: 150 MPa</td>
</tr>
<tr>
<td>• T_{amb}: 900 K</td>
</tr>
<tr>
<td>• ρ_{amb}: 22.8 kg/m³</td>
</tr>
</tbody>
</table>

Non-reacting: Liquid/vapor penetration and Mixture Fraction distribution (RANS)

Vapor & Liquid penetration [m]

Distance from axis [mm]

Time after SOI [s]

Mixture Fraction

Sim. | Exp.
Case Study: Constant Volume Vessel | ECN Spray A

n-dodecane Chemistry:

Mechanism of Yao et al. was used.

54 species and 269 reactions

Yao et al. 9th U. S. National Combustion Meeting
Case Study: Constant Volume Vessel | ECN Spray A

FGM: Table dimensions and progress variable definition

Spray A ambient composition

\[C = Y_{HO_2} + Y_{CH_2O} + Y_{H_2O} + Y_{CO_2} + Y_{CO} \]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
<th>No. of discretization points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progress Variable</td>
<td>(0 < c < 1)</td>
<td>500</td>
</tr>
<tr>
<td>Mixture Fraction</td>
<td>(0 < Z < 1)</td>
<td>500</td>
</tr>
<tr>
<td>Unburned Temperature [K]</td>
<td>(750 < T_u < 1100)</td>
<td>6</td>
</tr>
<tr>
<td>Pressure [bar]</td>
<td>(50 < p < 80)</td>
<td>3</td>
</tr>
</tbody>
</table>

![Graphs showing C vs Z at different temperatures]
Case Study: Constant Volume Vessel | ECN Spray A

Reacting: Ignition Delay, PRR, Flame Lift-off

<table>
<thead>
<tr>
<th>Ambient temperature [K]</th>
<th>800</th>
<th>900</th>
<th>1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignition delay [ms] Simulation</td>
<td>0.91</td>
<td>0.45</td>
<td>0.25</td>
</tr>
<tr>
<td>Experiment</td>
<td>0.85</td>
<td>0.41</td>
<td>0.24</td>
</tr>
<tr>
<td>Flame lift-off [mm] Simulation</td>
<td>25.1</td>
<td>16.5</td>
<td>11.7</td>
</tr>
<tr>
<td>Experiment</td>
<td>26.2</td>
<td>16.7</td>
<td>12.2</td>
</tr>
</tbody>
</table>

- **800 K**
- **900 K**
- **1000 K**
Case Study: Constant Volume Vessel | ECN Spray A

Reacting: Ignition Delay, PRR, Flame Lift-off at 3 CAD ATDC

800 K

900 K

1000 K

<table>
<thead>
<tr>
<th>Temperature [K]</th>
<th>OH</th>
<th>Pressure rise rate [bar/ms]</th>
</tr>
</thead>
<tbody>
<tr>
<td>800 K</td>
<td>0.00107</td>
<td>0.5</td>
</tr>
<tr>
<td>900 K</td>
<td>0.001211</td>
<td>0.5</td>
</tr>
<tr>
<td>1000 K</td>
<td>0.001276</td>
<td>0.5</td>
</tr>
</tbody>
</table>

End of Inj.→
Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine
- Conclusions
Case Study: Light Duty Diesel Engine | ECN Spray B

Experimental configuration

Spray B – Bosch injector

- **Injector type:** #211199 Bosch Spray B
- **Hole sizes:** #1, 2, 3, 90.9 μm, 91.7 μm, 90.9 μm
- **Nominal included angle:** 145°
- **Nozzle shaping:** Smoothed
- **Discharge coefficient:** C_d = 0.86
- **Hole angular position:**
 - #1 36.4°, #2 -62.3°, #3 180°

Sandia Optical Engine

<table>
<thead>
<tr>
<th>Component</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intake valves</td>
<td>2</td>
</tr>
<tr>
<td>Exhaust valves</td>
<td>1</td>
</tr>
<tr>
<td>Swirl ratio</td>
<td>0.5</td>
</tr>
<tr>
<td>Bore x Stroke</td>
<td>13.97 x 15.24 cm</td>
</tr>
<tr>
<td>Bowl width x depth</td>
<td>9.78 x 1.55 cm</td>
</tr>
<tr>
<td>Displacement</td>
<td>2.34 L</td>
</tr>
<tr>
<td>Compression ratio</td>
<td>11.22 : 1</td>
</tr>
<tr>
<td>Connecting rod length</td>
<td>30.48 cm</td>
</tr>
</tbody>
</table>

Mie scattering

- **Color Phantom v611**
- **Frame rate:** 67kHz
- **Exposure:** 14us
- **Lens:** =85mm f/1.4

Schlieren

- **Phantom v71**
- **Frame rate:** 25kHz
- **Exposure:** 19us
- **Lens:** 105mm f/2.5

Chimiluminescence OH*

- **Intensified Phantom v71**
- **Frame rate:** 7.2kHz (1CAD)
- **Exposure:** 55us
- **Lens:** 105mm UV f/4.5

SAE 2016-01-0743
Case Study: Light Duty Diesel Engine | ECN Spray B

Operating conditions:

<table>
<thead>
<tr>
<th>Case name</th>
<th>900K</th>
<th>800K</th>
<th>1000K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature at IVC [K]</td>
<td>380</td>
<td>340</td>
<td>454</td>
</tr>
<tr>
<td>Pressure at IVC [bar]</td>
<td>2.25</td>
<td>2.01</td>
<td>2.61</td>
</tr>
<tr>
<td>Temperature at TDC [K]</td>
<td>900</td>
<td>800</td>
<td>1000</td>
</tr>
<tr>
<td>Density at TDC [kg/m³]</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-reacting O₂ [%]</td>
<td>7.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Reacting O₂ [%]</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection pressure [bar]</td>
<td>1500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injected mass [mg/cycle]</td>
<td>3.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engine Speed [rpm]</td>
<td>1200</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inj. start [CAD ATDC]</td>
<td>-2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inj. duration [CAD]</td>
<td>11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Spray oriented grid

45,916 cells at TDC
341,562 cells at BDC
48.7 and 11.2 for maximum and average mesh non-orthogonality
Case Study: Light Duty Diesel Engine | ECN Spray B

Non-reacting: Liquid/vapor penetration
Reacting: In-cylinder Pressure and AHRR

800 K
- **In-cylinder pressure [bar]**
- **AHRR [J/CAD]**

900 K
- **In-cylinder pressure [bar]**
- **AHRR [J/CAD]**

1000 K
- **In-cylinder pressure [bar]**
- **AHRR [J/CAD]**
Case Study: Light Duty Diesel Engine | ECN Spray B

Reacting: Flame Lift-off

![Temperature Maps](image-url)

- **800 K**: Temp [K] 2300, Time: -165 CAD ATDC
- **900 K**: Temp [K] 2300, Time: -165 CAD ATDC
- **1000 K**: Temp [K] 2300, Time: -165 CAD ATDC
Reacting: Flame Lift-off

- Simulation results for 800 K, 900 K, and 1000 K temperatures.
- Experimental data at 800 K, 900 K, and 1000 K temperatures.

Graph showing flame lift-off as a function of CAD ATDC.
Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine
- Conclusions
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Experimental configuration

Operating conditions

<table>
<thead>
<tr>
<th>Case</th>
<th>HT-Sh-ID</th>
<th>HT-Lo-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Speed [rpm]</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Temperature at IVC [K]</td>
<td>384</td>
<td>320</td>
</tr>
<tr>
<td>Pressure at IVC [bar]</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Temperature at TDC [K]</td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>Density at TDC [kg/m³]</td>
<td>24</td>
<td>22.3</td>
</tr>
<tr>
<td>Injected mass [mg/cycle]</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Inj. start [CAD ATDC]</td>
<td>-7</td>
<td>-5</td>
</tr>
<tr>
<td>Inj. duration [CAD]</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>O₂ concentration [% by Vol.]</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

Injected Mass = $16.2 \times$ Injected Mass

Heavy Duty Spray B

SAE 2006-01-0055
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Non-reacting: Liquid penetration

Operating conditions

<table>
<thead>
<tr>
<th>Case</th>
<th>HT-Sh-ID</th>
<th>HT-Lo-ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine Speed [rpm]</td>
<td>1200</td>
<td>1200</td>
</tr>
<tr>
<td>Temperature at IVC [K]</td>
<td>384</td>
<td>320</td>
</tr>
<tr>
<td>Pressure at IVC [bar]</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>Temperature at TDC [K]</td>
<td>900</td>
<td>800</td>
</tr>
<tr>
<td>Density at TDC [kg/m³]</td>
<td>24</td>
<td>22.3</td>
</tr>
<tr>
<td>Injected mass [mg/cycle]</td>
<td>61</td>
<td>61</td>
</tr>
<tr>
<td>Inj. start [CAD ATDC]</td>
<td>-7</td>
<td>-5</td>
</tr>
<tr>
<td>Inj. duration [CAD]</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>O₂ concentration [% by Vol.]</td>
<td>21</td>
<td>21</td>
</tr>
</tbody>
</table>

Injected Mass = 16.2 × Injected Mass

Heavy Duty

Spray B

Injected Mass

Liquid length [mm]

CAD ATDC

HT-Sh-ID

HT-Lo-ID

Experiments
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Reacting: In-cylinder Pressure & AHRR

HT-Sh-ID

HT-Lo-ID
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Reacting: Flame Structure at -5 CAD ATDC

HT-Sh-ID
HT-Lo-ID
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Reacting: Flame Structure at -4 CAD ATDC

Graphs showing temperature distribution and in-cylinder pressure and AHRR with injection timing for HT-Sh-ID and HT-Lo-ID cases.
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Reacting: Flame Structure at -1 CAD ATDC
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Reacting: Flame Structure at TDC

In-cylinder pressure (bar) vs. CAD ATDC

HT-Sh-ID

HT-Lo-ID

Injection
Case Study: Heavy Duty Diesel Engine | Sandia Engine

Reacting: Flame Structure at 3 CAD ATDC

Graphs:

- **HT-Sh-ID:**
 - Temperature and In-cylinder pressure vs. CAD ATDC.
 - Experiment and Simulation curves.
 - Injection point indicated.

- **HT-Lo-ID:**
 - Similar to HT-Sh-ID but with different parameters.

Graph Details:

- **Axes:**
 - Temperature (K) vs. CAD ATDC for HT-Sh-ID.
 - In-cylinder pressure [bar] vs. CAD ATDC for HT-Sh-ID.
 - In-cylinder pressure [bar] vs. CAD ATDC for HT-Lo-ID.

3rd Two-day Meeting on IC Engine Simulations Using OpenFOAM Technology 22-23 Feb 2018 - Milano
Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine
- Conclusions
Conclusions

- FGM combustion closure was incorporated into OpenFOAM and Lib-ICE to model reacting spray and Diesel engine conditions.

- Progress variable source provided by FGM tabulation was capable of accurate predictions for state of thermodynamics of the mixture under non/partially premixed combustion configurations.

- For studied ambient temperature conditions, results of ignition delay, PRR or AHRR as well as flame lift-off was well agreeing with the experiments.

- n-dodecane chemical kinetics still suffers from comprehensive mechanism for low temperature combustion and there is a need for an extensively validated mechanism.
Thanks for your attention!

Amin Maghbouli
contact: amin.maghbouli@gmail.com