Third Two-Day Meeting on Internal Combustion Engine Simulations Using the OpenFOAM technology, Milan 22nd-23rd February 2018.

Gas exchange and fuel-air mixing simulations in a turbocharged gasoline engine with high compression ratio and VVA system

D. Paredi, T. Lucchini, G. D'Errico

Politecnico di Milano, Department of Energy

Acknowledgements

The results proposed in this presentation were achieved thanks to fundings with **Grant from UE**, n. 724036, H2020-EU.3.4.

Topics

SI engines modeling using the OpenFOAM[®] technology

Lib-ICE coupled with OpenFOAM

SI engines simulation workflow

Mesh generation and management

Gas exchange and cold-flow

Spray modeling and air-fuel mixture

Gaseous fuel direct injection

Next steps and conclusions

Lib-ICE and OpenFOAM

Internal combustion engine modeling using the OpenFOAM technology

SI engines: simulation workflow

Global overview

www.engines.polimi.it

5

SI engines: simulation workflow

Specific overview

www.engines.polimi.it

Mesh generation and management

Global methodology

Full-cycle simulations:

- Multiple meshes
- \geq Mesh to mesh interpolation strategy.

Duration of each mesh:

User defined + quality criteria

www.engines.polimi.it

Mesh generation and management

Mesh generation: IFP Energies nouvelles optical engine

www.engines.polimi.it

8

Mesh generation and management

Mesh manipulation: IFP Energies nouvelles optical engine and 1.0 liter, 3 cyl. VVA engine

IFP optical engine

- > Multiple meshes
- Mesh to mesh interpolation strategy
- Ducts are removed when not used
- > 1 mm internal cell size
- > 0.5 mm internal cell size under the injector
- Local refinement down to 0.125 mm at the valves

1.0 liter, 3 cyl. VVA engine

- Unsteady flow in detached ducts is simulated along with the engine
- Pressure waves helping cylinder filling are taken into account
- Fuel backflow into the intake ducts is taken into account

SI Engines: cold flow

1.0 liter, 3 cyl. VVA engine: case set-up and validation

CFD setup

- Second-order numerical schemes
- Turbulence model: standard k-ε
- Unsteady BC imposed at inlet and outlet ports on the basis of data provided by GT-POWER simulations

Tested operating conditions

	Partial load	2000 rpm		
	Full load	5500 rpm		
In	termediate load	4000 rpm		

Presented in this work

Validation by **comparing computed** and **experimental data** of incylinder pressure during gas exchange and compression processes

SI Engines: cold flow

IFP optical engine: geometry data, case set-up and validation

IMEP	4.7 bar		
Intake pressure	0.58 bar		
Exhaust pressure	1.03 bar		
IVO	360 CA		
IVC	573 CA		
EVO	129 CA		
EVC	361 CA		
Engine speed	1200 rpm		
Equivalence ratio	0.99		

- Second-order numerical schemes
- Turbulence model: standard k-ε
- Unsteady BC (from experimental data) imposed at inlet and outlet ports

Validation by **comparing computed** and **experimental data** of incylinder pressure during gas exchange and compression processes

SI Engines: cold flow

IFP optical engine: flow field post processing

www.engines.polimi.it

GROUP

Spray targeting in vessel: ECN Spray G

	Modeling of EC engines spray of	CN multi-hole GDI calibration activitie	CFD setup						
Baseline ECN Spray G condition						ction model	Lagrangian Huh		
	Engine-like conditions (experimental data from Istituto Motori CNR)					tomization model	Huh-Gosman		
	Case	(p_{inj}) [bar]	$(\rho_{amb}) \left \frac{kg}{m^3} \right $	(T_{amb}) [K]	S	econdary	Reitz-KHRT or		
	Case 1 (ECN)	200	3.5	573.15		break-up Type of mesh refinement Base cell size	Reitz-Diwakar		
	Case 4	200	3.5	473.15	Ту		Adaptive (AMR)		
	Case 5	200	3.5	473.15	r				
	Case 6	200	3.5	373.15	Ba		4 mm		
	Case 7	200	3.5	333.15	Mi	nimum cell	1 mm or 0.5 mm		
	Case 8	150	3.5	573.15		size			
	Case 9	150	3.5	333.15					
	Case 10	150	1.0	333.15		 Fuel: IC8H18 Turbulence model: standard k-E C1 = 1.44 			
	Case 11	100	1.0	333.15					
	Case 12	50	1.0	333.15					
				▶ 3	3D computational mesh				

ECN Spray G: spray penetration for ECN baseline and low-evaporating cases

15

ECN Spray G: spray penetrations after EOI

ECN Spray G: morphology and SMD

16

IFP optical engine: spray calibration

1.0 liter, 3 cyl. VVA engine – Partial load condition: fuel balance

GROUP

19

1.0 liter, 3 cyl. VVA engine – Partial load condition: mixture analysis

GROUP

POLITECNICO DI MILANO

1.0 liter, 3 cyl. VVA engine – Full load condition: fuel balance

1.0 liter, 3 cyl. VVA engine – Full load condition: fuel balance

www.engines.polimi.it

22

1.0 liter, 3 cyl. VVA engine – Full load condition: mixture analysis

23

1.0 liter, 3 cyl. VVA engine – Full load condition: fuel conservation

1.0 liter, 3 cyl. VVA engine – Full load condition: fuel conservation

1.0 liter, 3 cyl. VVA engine – Full load condition: fuel conservation

www.engines.polimi.it

SI Engines: natural gas direct injection

Gaseous direct injection – CFD Model validation on the Sandia optical engine

www.engines.polimi.it

SI Engines: natural gas direct injection

CHDGAS European project – 1900 rpm full load condition: mass balance

SI Engines: natural gas direct injection

(CHDGAS European project – 1900 rpm full load condition: ER analysis

- ER ~ 1 close to the spark-plug: high efficiency of the ignition process
- Lean zones close to the liner (unburned HC) and rich zones near the piston (CO)

Conclusions and next steps

CFD modeling of in-cylinder phenomena at PoliMi with OpenFOAM

Consolidated methodologies in gas exchange, injection modeling and air-fuel mixing currently applied in the context of industrial collaborations

Next steps

- Simulation of the combustion process for the different operating points of the 1.0 liter, 3 cyl. VVA engine
- GDI multi-hole spray modeling in vessel:
 - SMD injection with Rosin-Rammler distribution
 - Better reproduce the effects due to plume to plume interaction
 - More detailed analysis of the flash boiling condition

Thanks for your attention!