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Deterministic optimization only gives 
the optimum of the model

Parameter

Model  
output

Optimum without 
uncertainty
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Robust optimization takes 
uncertainty into account

Parameter

Model  
output

In practice, 
parameters have 
uncertainty

Different ranges 
of model output

More robust

When taking uncertainty for the pa-
rameter, the range of output of the
model can be large in the region of
the optimum. This means that the av-
erage across the uncertainty might be
higher elsewhere.

Challenge of robust optimization: 
curse of dimensionality

Cost 
optimization

Cost 
UQ

Cost 
robust  
optimization

X=

The curse of dimensionality is the major
challenge of robust optimization. We
combine the cost of uncertainty quan-
tification and the cost of optimization.

Rapid Compression Machines

Euforia network

Robust optimization results
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Rapid Compression Machines
Working principles
Why optimizing it?

Euforia network

Robust optimization results

Robust Optimization: application 
to rapid compression machines

Experimental vs.  
numerical results

2. Simplified model of 
the RCM („0-D‰)

1. Kinetic mechanism

Computation of numerical 
auto-ignition delays

Experimental data used to validate 
chemical kinetic mechanisms

The 0-D model makes an intrinsic part
of the validation process used by the
researchers.

Flat piston induces a vortex roll-up

Upiston
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Flat piston induces a vortex roll-up 
and inhomogeneous temperature

The vortex roll-up comes from the vor-
ticity present at the wall and being
scraped by the piston.

To prevent vortex roll-up, 
piston designed with crevices

Upiston

Piston geometry 
with crevices

All RCMs implement crevices (instead
of a flat piston) to absorb this vorticity.

With crevices, the temperature field 
is uniform

52 Chapter 3. Characterization of RCMs in non-reactive cases

Figure 3.2: Evolution of the azimuthal vorticity field (!✓) for a compression with a
flat piston. Positive values correspond to clockwise vorticity. The compression time
tc is equal to 14.0 ms, and t = 0 corresponds to the end of the compression.

Figure 3.3: Temperature field (left) and vorticity field (right) at the end of a com-
pression and at t = 5 ms for an RCM with a flat piston head. The flow has become
turbulent. The axis of symmetry at the upper edge of the illustrations represents the
double piston feature of the simulated machine.

Thanks to the crevice, the temperature
field is homogeneous.
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All crevices are not equally efficient
One of the biggest problems for ex-
perimentalist is that the presence of
crevices does not guarantee the ab-
sence of vortex roll-up.

The vortex roll-up induces 
significant deviation from the 0-D 
model
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Crevices should be adequately de-
signed otherwise experiments with
and without badly designed crevices
might not highlight the right problem.

Objective of the optimization: 
no vortex while being adiabatic

but risk of vortex due to speed

but compression ratio fixed (rV = 17)

Crevices big enough

Adiabatic core big enough

Objective: non-dimensional speed

Uvortex

Lstroke

.  tcompression
obj =

The main objective of the optimiza-
tion is therefore not to have a vortex.
But obviously, it should also have a
fast compression to keep an adiabatic
core.
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Geometric parameters 
to be optimized

Goldsborough et al., 2017

Geometrical uncertainty: 
1%

We optimize the geometry and  
the compression stroke properties

The find the best objective, we will in-
vestigate different geometries, using
the the parametrization of Goldsbor-
ough et al. (PECS, 2017)

We optimize the geometry and  
the compression stroke properties

Stroke length optimized 
with comp. ratio constant

Stroke uncertainty: 
10%

Stroke profile based on 
three steps

Piston speed

Time

tcompression

Three opt. parameters: 
acceleration, deceleration, 
tacceleration/tcompression

acceleration

deceleration

tacceleration

Aside from the geometry, one of the
important features is the compressions
stroke. We have parametrized it using
three main steps: acceleration, con-
stant speed, and braking. While the
uncertainty for the geometry was 1%,
the uncertainty on the stroke is much
higher (often not being measured ac-
curately): 10%.

Euforia network

Robust optimization results

Uncertainty Quantification
Optimization methodology

Rapid Compression Machines
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to rapid compression machines
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The Euforia framework:  
reliable, efficient and non-intrusive

Model to be optimized  
is considered as a black box

Similar framework as Dakota (Sandia)   
and includes our latest developments 
-UQ method 
-surrogate-based optimizers

Euforia is a light wrapper  
written in Python 

OpenFOAMEuforia

To tackle the challenge of the curse of
dimensionality we are combining effi-
cient methods for uncertainty quantifi-
cation and optimization. In the per-
spectives, we’ll see even more ad-
vanced methods we will use as a con-
tinuation of this study.

We use polynomial chaos expansion  
for uncertainty quantification

Debusschere, 2013 

For a given  
uncertainty 
in the parameters 
we obtain uncertainty 
in the output

Model output

Parameter

Probability  
distribution 

Probability output

To represent the uncertainty on the
model’s output as a response to the
parameters’ uncertainty, we use poly-
nomial chaos expansion.

We use polynomial chaos expansion  
for uncertainty quantification

Model approximated by 
polynomial chaos expansion

u(⇠) ⇡
X

yi i(⇠)
Model 
output

Uncertain  
parameter(s)

Orthogonal 
polynomials

Unknown coefficients 
to be found with samples = simulation results

Polynomial chaos expansion is a sort
of local surrogate model used to rep-
resent the model output. It is based
on a series of orthogonal polynomi-
als where the coefficients are the un-
knowns and require simulations.
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Mean and variance of the objective 
are given directly by Polynomial Chaos

Mean = y0

Variance = 
X

y2
i h 2

i i
Optimization aims  
at reducing both 
= multi-objective

The advantages of polynomial chaos
are the faster convergence com-
pared to methods such as Monte
Carlo, and the the easy recovery of
the mean and variance based on the
coefficients of the polynomials.

Optimization based on Cuckoo search 
coupled with specific sorting criterion

Non-dominated  
Sorting by crowding distance 
(from NSGA-II)

Cuckoo search: mimics cuckoos  
flying around to lay eggs

Survival of eggs in good nests 
=good model solution

Fly following Levy distribution 
=many small steps for every big one

We used one of the available optimiz-
ers, namely Cuckoo search. It is based
on the (aggressive) breeding behavior
of the Cuckoo birds and the foraging
path of animals. They fly using a Levy
distribution which includes many small
steps (for local exploration) for every
big step (for global exploration).

Robust optimization results
Computational cost
Pareto front

Rapid Compression Machines

Euforia network

Robust Optimization: application 
to rapid compression machines
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The total cost includes the sampling 
for optimization and UQ

The optimizer explores 
the parameters’ space 
to find an optimimum

parameter 2

parameter 1

While the optimizer search for the opti-
mum in the parameters’ space, it re-
quires statistics (mean and variance)
as multi-objective

The optimizer explores 
the parameter space 
to find an optimimum

parameter 2

parameter 1

UQ module needs 
additional points 
to compute statistics

The total cost includes the sampling 
for optimization and UQ

These statistics are provided by sam-
pling in the region of the sample us-
ing the polynomial chaos. Sampling
based on Sobol sequence. S. Abra-
ham et al., JCP, 2017.

Full polynomial chaos 
order 2, 9 uncertain parameters 
requires 110 samples

Optimization is based on 
full CFD model for all samples

For this reference case,  
the cost is still very expensive

This will be the reference for 
future research (see perspectives)

Around 10 000 CFD simulations 
on 60 cores: 2 days

We use this case as a demonstration
for more advanced techniques to re-
duce the computation cost. There-
fore, the current simulations were
based on full polynomial chaos and
CFD for every sample.
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Mean

Variance 

Variance and mean are  
are non-confronting objectives 

Reducing the mean also helps reduc-
ing the variance of the objective.

Parameter

Model  
output

Parameter

Model  
output
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Variance and mean are  
are non-confronting objectives 

18 m/s

21 msVcrevices=15.2 cm3 
stroke= 24cm

12 m/s

17 msVcrevices=8.8 cm3 
stroke= 16cm

Vcrevices=2.2 cm3 
stroke= 28.6cm

18 m/s

22 ms

Uvortex

Lstroke

.  tcompression
obj =

Here are some geometries and com-
pression stroke properties correspond-
ing to some points in the objective
space.

Using Sobol indices, we compute 
the sensitivity of the variance

1%

uncertainty

10%

Sobol indices 
for robust optimum

Sobol indices are readily available as
a side-product of polynomial chaos. It
measures the contribution of each pa-
rameter to the variance.

Rapid Compression Machines

Euforia network

Robust optimization results
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Next step for this RCM study
Use as reference to further illustrate: 

1. Surrogate-based optimization 
No need to run CFD for all samples 
Expected speed-up: ~10 

2. Sparse Polynomial Chaos 
Take advantage of sparsity  
to reduce number of samples 
Expected speed-up: ~2 
Abraham et al., JCP, 2017

Next step for robust optimization

Application to Diesel case 

In collaboration with  
ICE group @PoliMi 

Tier-1 cluster for 3 106 core.hours
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Next big developments: 

1. Improved Jacobian 
2. Quasi-steady state  

stiffness removal 
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