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Tabulated kinetics for combustion modeling in CI engines

1) Motivation

2) Tabulation based on homogeneous reactor

3) Combustion models based on tabulated kinetics
• Well-mixed model
• Presumed PDF
• RIF with tabulated kinetics
• Flamelet progress variable
• Dual-fuel combustion

4) Validation
• Conventional Diesel
• PCCI combustion
• Dual-fuel combustion
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Why tabulated kinetics?

• New combustion modes and fuels to further reduce fuel consumption and pollutant emissions: 
▪ Dual fuel (Diesel-Natural gas, RCCI)
▪ Single-fuel, kinetically controlled (PCCI, HCCI, spark-assisted)
▪ New fuels (bio, carbon-neutral...)

• Virtualization of engine design: 
▪ CFD has a crucial role
▪ Fast, accurate, robust models for prediction of engine performance and pollutant emissions
▪ Need to find a compromise between: 

o Computational efficiency
o Complex flame structures and kinetic schemes

• Tabulated kinetics is the solution: 
▪ Capability to incorporate complex flame

structures and kinetics schemes
▪ Reduced CPU time
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Internal combustion engine modeling using the OpenFOAM® technology

➢ Mesh motion for complex geometries

➢ Combustion

➢ Lagrangian sprays + liquid film

➢ Unsteady flows in intake and exhaust systems: plenums, silencers, 1D-3D coupling.

➢ Reacting flows in after-treatment devices: DPF, catalyst, SCR.

Lib



Tabulated kinetics
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Constant-pressure homogeneous reactor tabulation

Kinetic

mechanism

Conditions

• p, Tu, f, EGR

Homogeneous, 

constant-

pressure reactor

simulations

HR Table
- Composition (virtual

species)

- Output species

- Progress variable

reaction rate

The table generator is PYTHON script using the CANTERA library:
- highly flexible
- fast, reliable
- fully parallel

Acknowledgment: MSc Student Alberto Comolli
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Governing equations

Mixture fraction

Progress variable

Unburned gas enthalpy Depends on the 
combustion model

Table

composition

Stoichiometric scalar 
dissipation rate ;

Mixture fraction variance
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HR Table

CFD solver

TWM: tabulated well-mixed

• No turbulence-chemistry interaction

TPPDF: tabulated presumed PDF

• HR Table is processed to include the effects of 
mixture fraction fluctuations in the calculation of the 
PV source term and composition.

HR Table
Z
c

SZ

Sc

Presumed
PDF Table

Z’’2

c’’2

ሶ𝐶 = ඵ

0

1

ሶ𝐶 𝑍, 𝑐 𝛽 𝑍, 𝑍′′2 𝛿 𝑐, 𝑐′′2 𝑑𝑐𝑑𝑍

• Only fluctuations, no sub-grid mixing

Combustion models
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Tabulated Representative Interactive Flamelet (TRIF)

• Laminar flamelet concept applied to describe Diesel 
combustion. 

• Flamelet equations are solved in the Z-domain using
tabulated kinetics

𝜕𝐶

𝜕𝑡
=
𝜒𝑍
2

𝜕2𝐶

𝜕𝑍2
+ ሶ𝐶

𝜕ℎ

𝜕𝑡
=
𝜒𝑍
2

𝜕2ℎ

𝜕𝑍2
+
1

𝜌

𝑑𝑝

𝑑𝑡

• The rest of the model is like the standard RIF: 

➢ On-line beta-PDF integration

➢ Possibility to use multiple flamelets

Combustion models
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Combustion models

Initial 

conditions

Diffusion

flame with

TRIF

HR 

Table

TFPV 

Table

Tabulated flamelet progress variable TFPV

• Approach similar to ADF (Approximated Diffusion Flames)

• Turbulence/chemistry interaction, sub-grid mixing and 
premixed flame propagation.

• Progress variable reaction rate function also of the 
stoichiometric scalar dissipation rate 𝜒𝑠𝑡

• Correct estimation of
▪ extinction in the near nozzle region;
▪ re-ignition;
▪ flame stabilization process;

• TFPV table generated using TRIF and a variable time-step 
strategy to reduce the required computational time.
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Combustion models: dual fuel combustion

Assumptions
• One progress variable in any cell
• Ignition governed by progress variable diffusion and local conditions (pressure, 

temperature, mixture fraction)
➢ One table for any fuel

• Homogeneous mixture
➢ Air is uniformily distributed among the two fuels ("single fuel mixture fraction" is

equal to the global mixture fraction)

Model
• Transport equations for the two fuel mixture fractions (Z1 and Z2)
• Progress variable reaction rate is computed as the weighted average of the corresponding

values for the two fuels.
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Table 1

Table 2

𝑍, 𝑇𝑢, 𝑐, ෪𝑍
′′2, 𝑝, 𝜒𝑠𝑡

𝑍, 𝑇𝑢, 𝑐,
෪𝑍′′2, 𝑝, 𝜒𝑠𝑡

ሶ𝜔𝑐,1, 𝒀1, 𝑍1

ሶ𝜔𝑐,2, 𝒀2, 𝑍2

ሶ𝜔𝑐 , 𝑌𝑖

ሶ𝜔𝑐 =
𝑍1 ∙ ሶ𝜔𝑐,1 𝑇𝑢, 𝑍, ෪𝑍

′′2, 𝑝, 𝑐 + 𝑍2 ∙ ሶ𝜔𝑐,2 𝑇𝑢, 𝑍, ෪𝑍
′′2, 𝑝, 𝑐

𝑍1 + 𝑍2

Progress variable source term

𝒀 =
𝑍1 ∙ 𝒀1 𝑇𝑢, 𝑍, ෪𝑍

′′2, 𝑝, 𝑐 + 𝑍2 ∙ 𝒀2 𝑇𝑢, 𝑍, ෪𝑍
′′2, 𝑝, 𝑐

𝑍1 + 𝑍2

Composition

Combustion models: dual fuel combustion
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Tabulated NOx

• NOx progress variable: 

➢ 𝑐𝑁𝑂𝑥 =
𝑌𝑁𝑂𝑥
𝑌𝑁𝑂𝑥,𝑒𝑞

➢ 𝑌𝑁𝑂𝑥 = 𝑌𝑁𝑂 + 𝑌𝑁𝑂2 + 𝑌𝑁2𝑂 + 𝑌𝑁2𝑂2

• NOx formation and ignition have different time scales

▪ A combustion progress variable threshold value is
used to select the expression for ሶ𝜔𝑁𝑂𝑥

➢ c < 0.5 : ሶ𝜔𝑁𝑂𝑥 = ሶ𝜔𝑁𝑂𝑥(𝐶)

➢ c > 0.5 : ሶ𝜔𝑁𝑂𝑥 = ሶ𝜔𝑁𝑂𝑥(𝐶𝑁𝑂𝑥)

Ignition

NOx

Prompt Thermal
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Soot

• Leung, Lindsted and Jones Model. Two transport equations solved for particle number density
Np and soot volume fraction fv accounting for inception, coagulation, surface growth and 
oxidation:

ሶ𝜔𝑁𝑝 = ሶ𝜔𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 − ሶ𝜔𝑐𝑜𝑎𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

ሶ𝜔𝑓𝑣 = ሶ𝜔𝑖𝑛𝑐𝑒𝑝𝑡𝑖𝑜𝑛 + ሶ𝜔𝑠𝑢𝑟𝑓𝑎𝑐𝑒 𝑔𝑟𝑜𝑤𝑡ℎ − ሶ𝜔𝑜𝑥𝑖 𝑂2 − ሶ𝜔𝑜𝑥𝑖 𝑂𝐻

➢ Acetylene (C2H2) used as soot precursor species, inception and surface growth quantities
computed using the averaged acetylene concentration in each computational cell.



Validation
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Conventional Diesel
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Name [rpm] load λ EGR #inj

1 HEGR 1400 12% 2.7 40% 3

2 1400x50 1400 50% 1.4 15% 3

3 A25 2000 25% 2.1 20% 3

4 A75 2000 75% 1.3 15% 3

5 B50 2750 50% 1.4 15% 3

6 B100 2750 100% 1.3 5% 2

7 C40 3500 40% 2.3 10% 3

8 C100 3500 100% 1.5 0% 1

Selected operating points
Bore 96 mm

Stroke 104 mm

Compression ratio 18

IVC -145 deg

EVO 110 deg

Swirl ratio 1.3

# holes 8

Nozzle hole diameter 140 μm

Homologation EU6
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Conventional Diesel

Simulation setup

• 1/8 of the combustion chamber, spray-
oriented, automatically generated with the 
Python Polimi pre-processor

• 250000 cells at IVC
• 40000 cells at TDC

Mesh

Tabulation

Temperature [K] 600 - 1300 K (step 50 K)

Pressure [bar] 20-200 (step 40) 

Equivalence ratio
0-3 (finer resolution close

to 𝜙 = 1)

Mixture fraction
segregation

0.0, 0.001 0.0025, 0.01, 
0.025, 0.1 1.0

Scalar dissipation rate χst

[1/s]
0, 1, 3, 7, 20, 55

• TPPDF, TRIF, TFPV models

• Fuel: n-C12H26

• Mechanism: Frassoldati et al (96 species)
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Conventional Diesel

• B50

• 50% load

• 3 injections

• 15% EGR
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• Similar heat release rate 

during main combustion

• Ignition delay: 

 TFPV ignites earlier

than TRIF and TPPF 

during second and 

main injection events.
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Conventional Diesel

• All the models are able to capture in-cylinder pressure peak and its location
• CPU time: 15 hours on a 8 core machine for a power-cycle (dual-core, eight processor Intel Xeon E5-

2630 v3 2.40GHz)
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Conventional Diesel
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PCCI combustion

Deep piston bowl

with reduced

compression ratio

Name
Speed 

[rpm]

bmep

[bar]
l EGR

1 PCCI1 2000 5 ~1.2 ~40%

2 PCCI2 2000 7.5 ~1.2 ~40%

3 PCCI3 3000 5 ~1.2 ~40%

Temperature [K] 600-800 (step 25 K)

800 - 1000 (step 12.5 K)

1000 - 1100 (step 25 K)

1100 - 1200 (step 50 K)

Pressure [bar] 20-200 (step 20 bar)

• Combustion model: TWM (TCI effects can 

be reasonably neglected)

• Fuel is n-heptane (n-C7H16) having similar

CN as Diesel

• Tabulated mechanism: 159 species from 

LLNL

Combustion chamber

Operating conditions Table discretization
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PCCI combustion: cylinder pressure

PCCI1: 2000x5 PCCI2: 2000x7.5 PCCI3: 3000x5
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PCCI combustion: heat release rate

PCCI1: 2000x5 PCCI2: 2000x7.5 PCCI3: 3000x5
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PCCI combustion: consistency

0

0.2

0.4

0.6

0.8

1

1.2

PCCI1 PCCI2 PCCI3

W
o
rk

 /
 W

o
rk

m
a

x

Exp

Calc

0

10

20

30

40

50

PCCI1 PCCI2 PCCI3 Exp

L
H

V
 [

M
J
/k

g
]

Gross indicated work fuel LHV from cumulative heat release

-0.7%



www.engines.polimi.it

Validation: FPT F1C Engine 25

PCCI combustion: emissions

NOx emissions
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Tabulated kinetics capable to predict PCCI 
combustion: 

- fuel auto-ignition (cool flame + main
ignition)

- peak pressure location, indicated work
- NOx emissions
- fuel energy release

To be done: 

- CO emissions (kinetically controlled and not
assumed to be at equilibrium conditions)
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Conventional Diesel: simulation setup

Low Load High Load

SOI [CAD BTDC] 2 -2

minj/minj,full 0.85 1

Mesh deforming, 650000 cells

Fuel type
n-C7H16 (gas phase)

IDEA (liquid properties)

Tabulated mechanism n-C7H16 from LLNL (159 species)

Tabulation 𝜙=0.2-3; T=500-1250 K; p=2-20 MPa
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Conventional Diesel: validation – Low Load
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Conventional Diesel: validation – High Load
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Conventional Diesel: validation

Fuel mass balance: 
𝑉 𝜌𝑍𝑑𝑉

𝐸𝑉𝑂 𝜌𝑑𝑉 − 𝐼𝑉𝐶 𝜌𝑑𝑉
< 0.2%

Fuel energy balance: 

𝐼𝑉𝐶
𝐸𝑉𝑂 ሶ𝑄𝑓𝑢𝑒𝑙 𝑑𝜃

𝑉,𝐸𝑉𝑂 𝜌𝑍𝑑𝑉

𝐿𝐻𝑉𝑛𝐶7𝐻16
≈ 99.5%

• Consistent results for single fuel mode: fundamental pre-requisite for successful
dual fuel combustion simulations

OK!
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Dual-fuel mode

Low Load High Load

SOI Diesel [CAD BTDC] -1 -1.5

SOI CNG [CAD BTDC] 1 0

Diesel fuel and natural gas directly injected into the cylinder with different SOI times
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Dual-fuel mode: simulation setup

Diesel fuel type
n-C7H16 (gas phase)

IDEA (liquid properties)

Tabulated mechanism n-C7H16 from LLNL (159 species)

Tabulation 𝜙=0.2-3; T=500-1250 K; p = 2-20 MPa

Natural gas CH4 (gas phase)

Tabulated mechanism CH4 from GRI (53 species)

Tabulation 𝜙=0.2-3; T=500-1250 K; p = 2-20 MPa
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Dual fuel mode: Low-load condition

0

0.2

0.4

0.6

0.8

1

1.2

-40 -20 0 20 40

p
/p

m
a
x
,e

x
p

Crank Angle [deg]

Experimental

Computed

0

0.5

1

1.5

2

2.5

3

3.5

-5 0 5 10 15 20 25 30

H
R

R
/H

R
R

m
a
x
,e

x
p

Crank Angle [deg]

Experimental

Computed

All data normalized with 
respect to the 
corresponding maximum 
experimental value

Diesel ignition
and 

combustion

Natural gas 
ignition and 
combustion
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Dual fuel mode: High-load condition
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Tabulated kinetics for combustion modeling in CI engines

Summary

• Capability to predict combustion in CI Engines: 
➢ Conventional Diesel
➢ PCCI
➢ Dual-fuel

• Consistency with respect to the energy balance  

Next steps

• Dual-fuel with turbulence-chemistry interaction: 
➢ TPPDF
➢ TFPV

• RCCI combustion
• Spark-assisted combustion

Future work

Tabulated kinetics (homogeneous reactor) 
combined with further complex flame structures: 

- Multi-environment PDF (2 or 3 environments)
- Transported PDF

CO and HC prediction

NOx in more complex flame structures



Thanks for 
your

attention!!!

Heavy duty vehicles

construction, mining & 

farming machinery

>90 % diesel

Passenger cars

and light duty vehicles

EU: 49% diesel 

Ships

>95 % diesel
Locomotives

EU: 55 % diesel

Should we rely on Diesel?

We have to, they are all around us

*S. V. Heeb, 20th ETH conference on Combustion Genereated

Nanoparticles 


