

Third Two-Day Meeting on Internal Combustion Engine Simulations Using the OpenFOAM technology, Milan 22-23 February 2018.

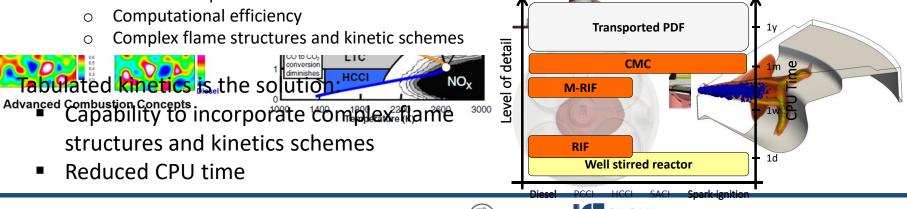
Validation of combustion models with tabulated kinetics for compression ignition engines operating with advanced combustion modes

<u>**T. Lucchini**</u>, G. D'Errico, A. Onorati, A. Comolli, F. Cattaneo Politecnico di Milano, Department of Energy

Topics

Tabulated kinetics for combustion modeling in CI engines

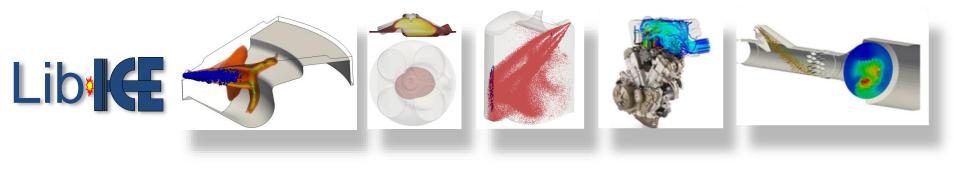
- 1) Motivation
- 2) Tabulation based on homogeneous reactor
- 3) Combustion models based on tabulated kinetics
 - Well-mixed model
 - Presumed PDF
 - RIF with tabulated kinetics
 - Flamelet progress variable
 - Dual-fuel combustion
- 4) Validation
 - Conventional Diesel
 - PCCI combustion
 - Dual-fuel combustion



Motivation

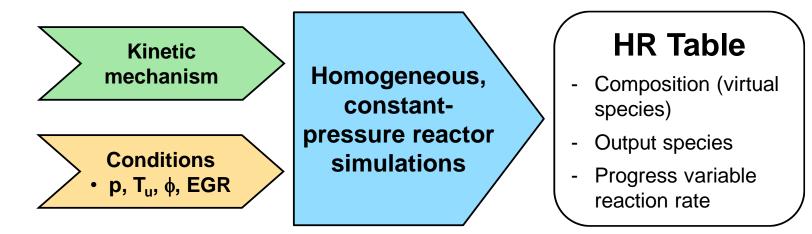
Why tabulated kinetics?

- New combustion modes and fuels to further reduce fuel consumption and pollutant emissions:
 - Dual fuel (Diesel-Natural gas, RCCI)
 - Single-fuel, kinetically controlled (PCCI, HCCI, spark-assisted)
 - New fuels (bio, carbon-neutral...)
- Virtualization of engine design:
 - CFD has a crucial role
 - Fast, accurate, robust models for prediction of engine performance and pollutant emissions
 - Need to find a compromise between:



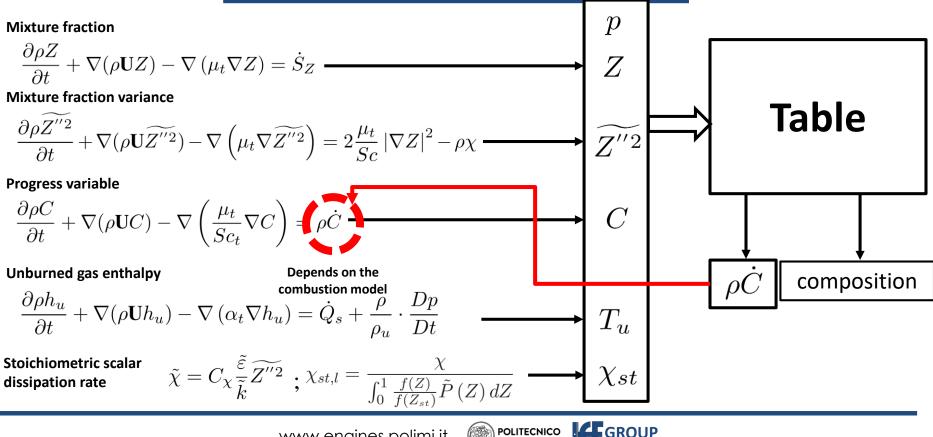
Lib-ICE

Internal combustion engine modeling using the OpenFOAM[®] technology


- Mesh motion for complex geometries
- Combustion
- Lagrangian sprays + liquid film
- Unsteady flows in intake and exhaust systems: plenums, silencers, 1D-3D coupling.
- Reacting flows in after-treatment devices: DPF, catalyst, SCR.

Constant-pressure homogeneous reactor tabulation

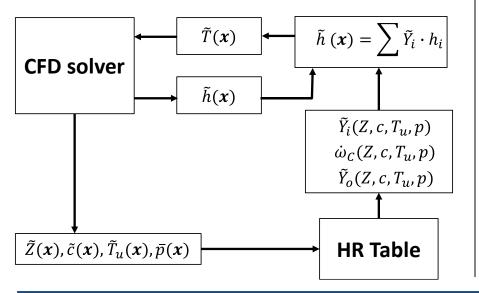
The table generator is PYTHON script using the CANTERA library:


- highly flexible
- fast, reliable
- fully parallel

Acknowledgment: MSc Student Alberto Comolli

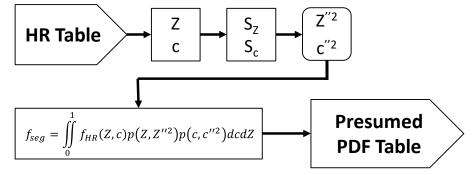
6

Governing equations


www.engines.polimi.it

Combustion models

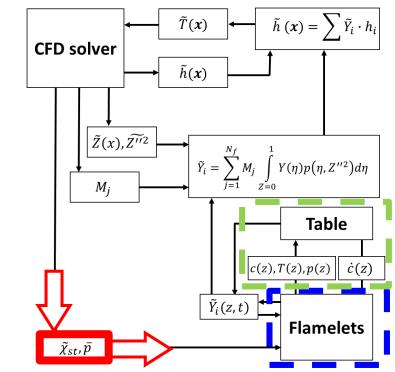
TWM: tabulated well-mixed


No turbulence-chemistry interaction

TPPDF: tabulated presumed PDF

$$\dot{C} = \iint_{0}^{1} \dot{C}(Z,c)\beta(Z,Z^{\prime\prime 2})\delta(c,c^{\prime\prime 2})dcdZ$$

- Only fluctuations, no sub-grid mixing
- HR Table is processed to include the effects of mixture fraction fluctuations in the calculation of the PV source term and composition.

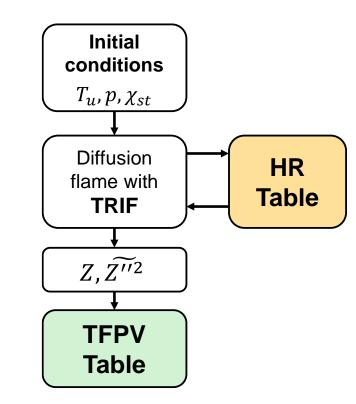

Combustion models

Tabulated Representative Interactive Flamelet (TRIF)

- Laminar flamelet concept applied to describe Diesel combustion.
- Flamelet equations are solved in the Z-domain using tabulated kinetics

$$\frac{\partial C}{\partial t} = \frac{\chi_Z}{2} \frac{\partial^2 C}{\partial Z^2} + \dot{C}$$
$$\frac{\partial h}{\partial t} = \frac{\chi_Z}{2} \frac{\partial^2 h}{\partial Z^2} + \frac{1}{\rho} \frac{dp}{dt}$$

- The rest of the model is like the standard RIF:
 - On-line beta-PDF integration
 - Possibility to use multiple flamelets



Combustion models

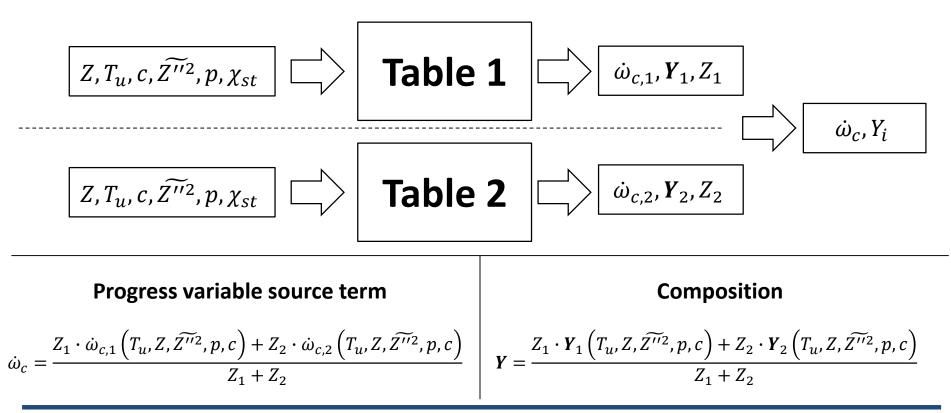
Tabulated flamelet progress variable TFPV

- Approach similar to ADF (Approximated Diffusion Flames)
- Turbulence/chemistry interaction, sub-grid mixing and premixed flame propagation.
- Progress variable reaction rate function also of the stoichiometric scalar dissipation rate χ_{st}
- Correct estimation of
 - extinction in the near nozzle region;
 - re-ignition;
 - flame stabilization process;
- TFPV table generated using TRIF and a variable time-step strategy to reduce the required computational time.

Combustion models: dual fuel combustion

Assumptions

- One progress variable in any cell
- Ignition governed by progress variable diffusion and local conditions (pressure, temperature, mixture fraction)
 - One table for any fuel
- Homogeneous mixture
 - Air is uniformily distributed among the two fuels ("single fuel mixture fraction" is equal to the global mixture fraction)


Model

- Transport equations for the two fuel mixture fractions $(Z_1 \text{ and } Z_2)$
- Progress variable reaction rate is computed as the weighted average of the corresponding values for the two fuels.

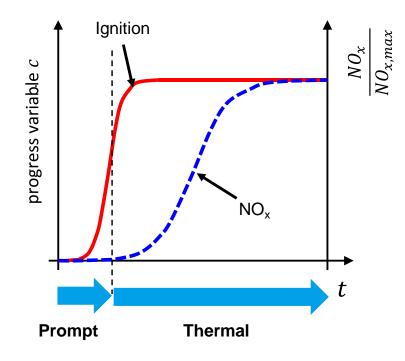
Combustion models: dual fuel combustion

Pollutant emissions

Tabulated NO_x

• NO_x progress variable:

$$\succ c_{NO_{\chi}} = \frac{Y_{NO_{\chi}}}{Y_{NO_{\chi},eq}}$$
$$\succ Y_{NO_{\chi}} = Y_{NO} + Y_{NO_{2}} + Y_{N_{2}O} + Y_{N_{2}O_{2}}$$


• NO_x formation and ignition have different time scales

$$\frac{\partial \bar{\rho} \tilde{Y}_{NO_x}}{\partial t} + \nabla \cdot \left(\bar{\rho} \tilde{\mathbf{U}} \tilde{Y}_{NO_x} \right) - \nabla \cdot \left(\frac{\tilde{\mu_t}}{Sc_t} \nabla \tilde{Y}_{NO_x} \right) = \dot{\omega}_{NO_x}$$

 A combustion progress variable threshold value is used to select the expression for ω_{NO_x}

$$\succ \quad \mathsf{c} < \mathsf{0.5} : \dot{\omega}_{NO_x} = \dot{\omega}_{NO_x}(\mathcal{C})$$

 $\succ c > 0.5 : \dot{\omega}_{NO_x} = \dot{\omega}_{NO_x}(C_{NO_x})$

Pollutant emissions

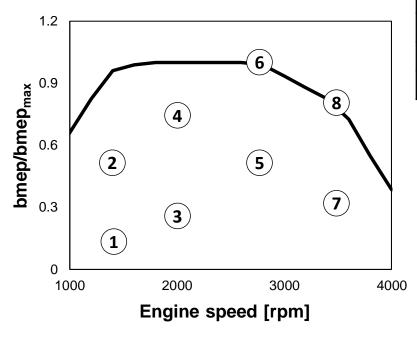

Soot

Leung, Lindsted and Jones Model. Two transport equations solved for particle number density N_p and soot volume fraction f_v accounting for inception, coagulation, surface growth and oxidation:

$$\dot{\omega}_{N_p} = \dot{\omega}_{inception} - \dot{\omega}_{coagulation}$$

$$\dot{\omega}_{f_v} = \dot{\omega}_{inception} + \dot{\omega}_{surface\ growth} - \dot{\omega}_{oxi\ O_2} - \dot{\omega}_{oxi\ OH}$$

Acetylene (C₂H₂) used as soot precursor species, inception and surface growth quantities computed using the averaged acetylene concentration in each computational cell.



Validation

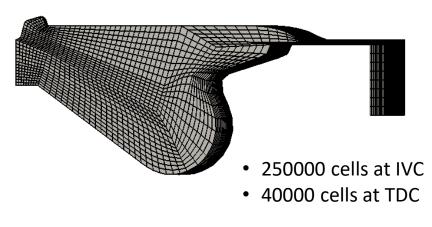
Conventional Diesel

Selected operating points

Bore	96 mm
Stroke	104 mm
Compression ratio	18
IVC	-145 deg
EVO	110 deg

Swirl ratio	1.3
# holes	8
Nozzle hole diameter	140 µm
Homologation	EU6

	Name	[rpm]	load	λ	EGR	#inj
1	HEGR	1400	12%	2.7	40%	3
2	1400x50	1400	50%	1.4	15%	3
3	A25	2000	25%	2.1	20%	3
4	A75	2000	75%	1.3	15%	3
5	B50	2750	50%	1.4	15%	3
6	B100	2750	100%	1.3	5%	2
7	C40	3500	40%	2.3	10%	3
8	C100	3500	100%	1.5	0%	1



Conventional Diesel

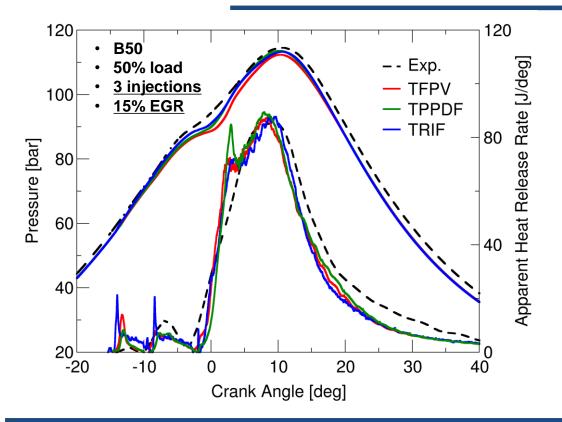
Simulation setup

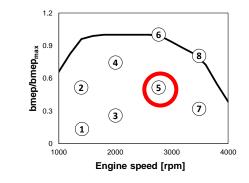
Mesh

 1/8 of the combustion chamber, sprayoriented, automatically generated with the Python Polimi pre-processor

Tabulation

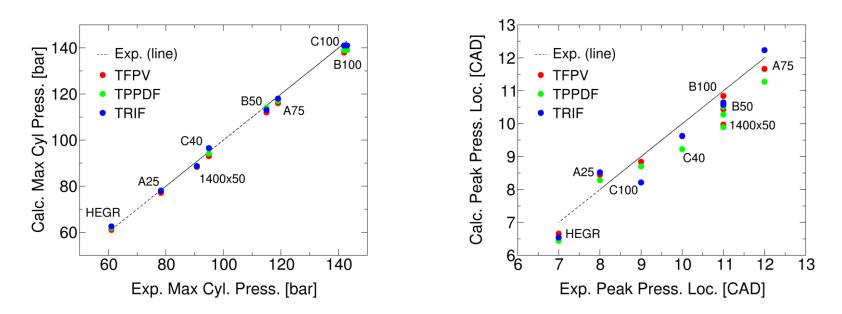
- Fuel: n-C₁₂H₂₆
- Mechanism: Frassoldati et al (96 species)


Temperature [K]	600 - 1300 K (step 50 K)
Pressure [bar]	20-200 (step 40)
Equivalence ratio	0-3 (finer resolution close to $\phi=1$)
Mixture fraction segregation	0.0, 0.001 0.0025, 0.01, 0.025, 0.1 1.0
Scalar dissipation rate χ_{st} [1/s]	0, 1, 3, 7, 20, 55


TPPDF, TRIF, TFPV models

Conventional Diesel

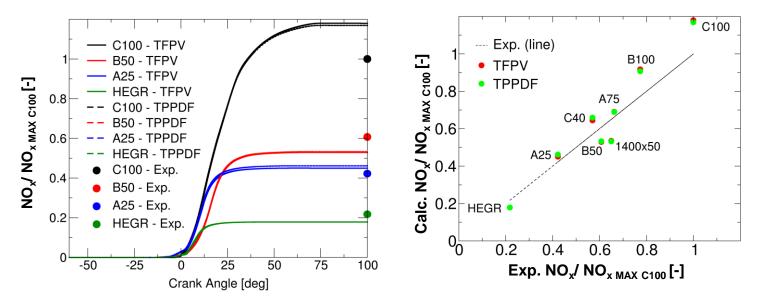
 Similar heat release rate during main combustion


Ignition delay:

GROUP

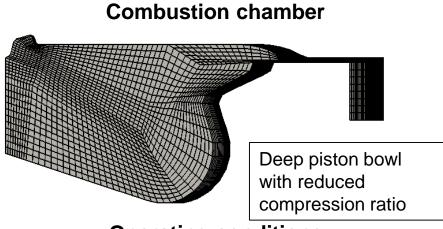
TFPV ignites earlier than TRIF and TPPF during second and main injection events.

Conventional Diesel



- All the models are able to capture in-cylinder pressure peak and its location
- CPU time: 15 hours on a 8 core machine for a power-cycle (dual-core, eight processor Intel Xeon E5-2630 v3 2.40GHz)

Conventional Diesel



- NO_x grow during combustion procress and they are frozen when cylinder temperature decreases.
- All predictions fall in the $\pm 20\%$ range compared to experimental data.

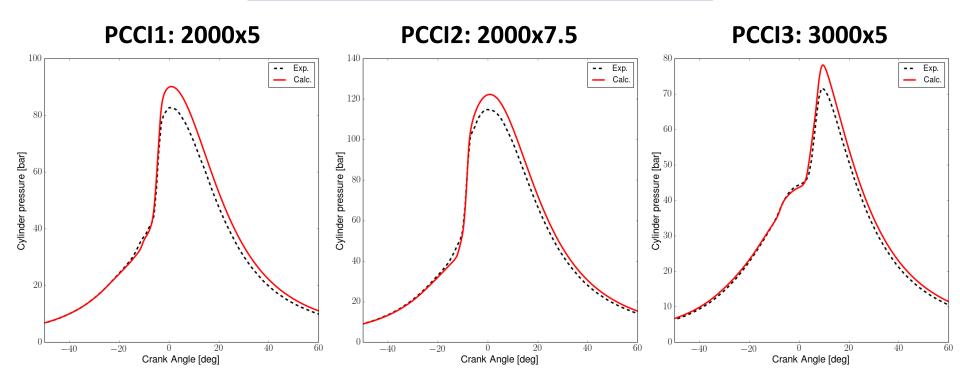
PCCI combustion

•

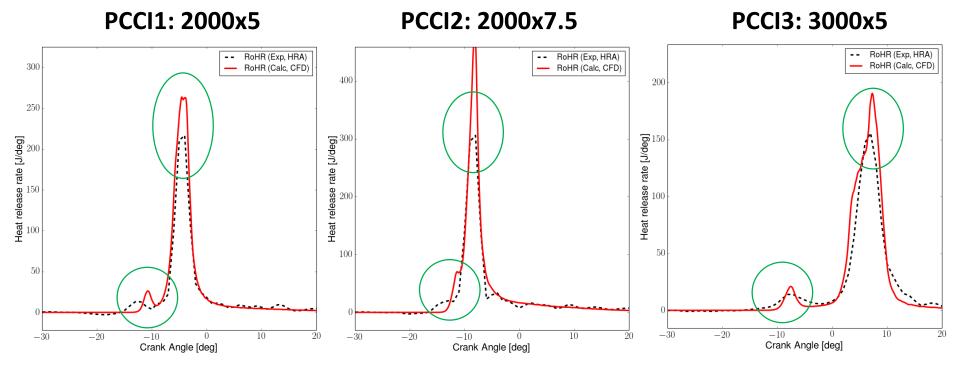
Operating conditions

	Name	Speed [rpm]	bmep [bar]	λ	EGR
1	PCCI1	2000	5	~1.2	~40%
2	PCCI2	2000	7.5	~1.2	~40%
3	PCCI3	3000	5	~1.2	~40%

- Combustion model: TWM (TCI effects can be reasonably neglected)
- <u>Fuel is n-heptane (n-C₇H₁₆) having similar</u> CN as Diesel
 - Tabulated mechanism: 159 species from LLNL

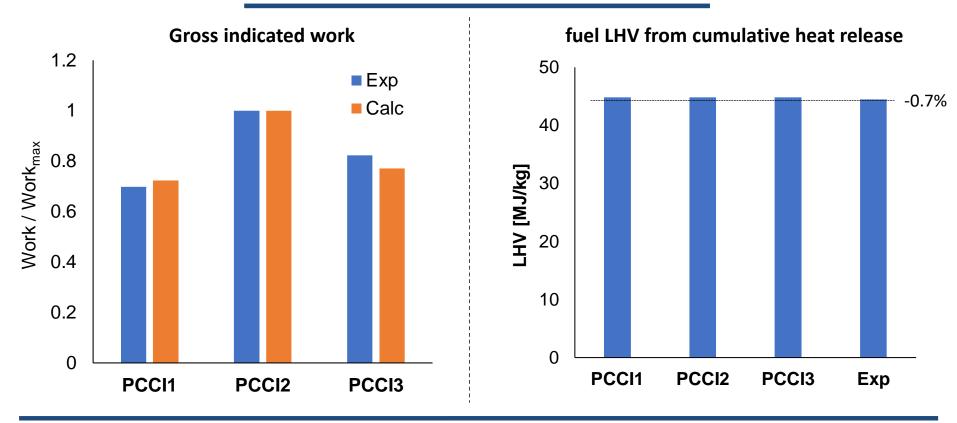

Table discretization

Temperature [K]	600-800 (step 25 K) 800 - 1000 (step 12.5 K) 1000 - 1100 (step 25 K) 1100 - 1200 (step 50 K)
Pressure [bar]	20-200 (step 20 bar)

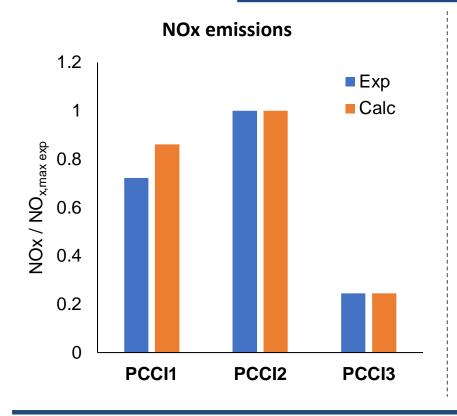

PCCI combustion: cylinder pressure

www.engines.polimi.it

PCCI combustion: heat release rate



GROUP


POLITECNICO DI MILANO

PCCI combustion: consistency

PCCI combustion: emissions

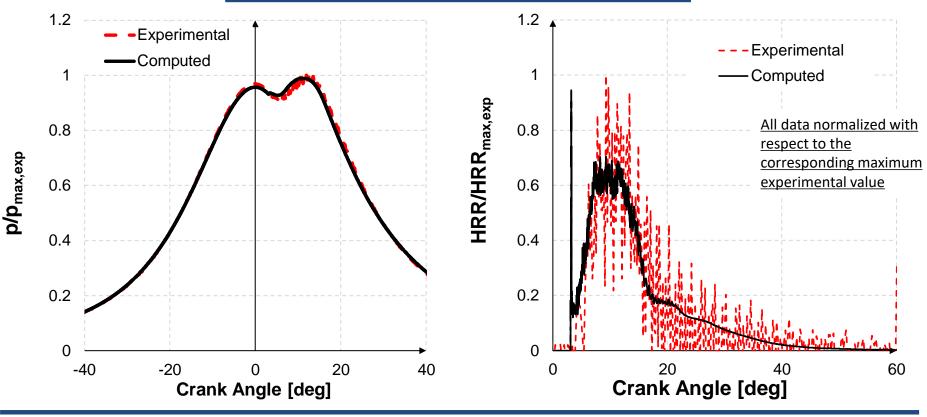


Tabulated kinetics capable to predict PCCI combustion:

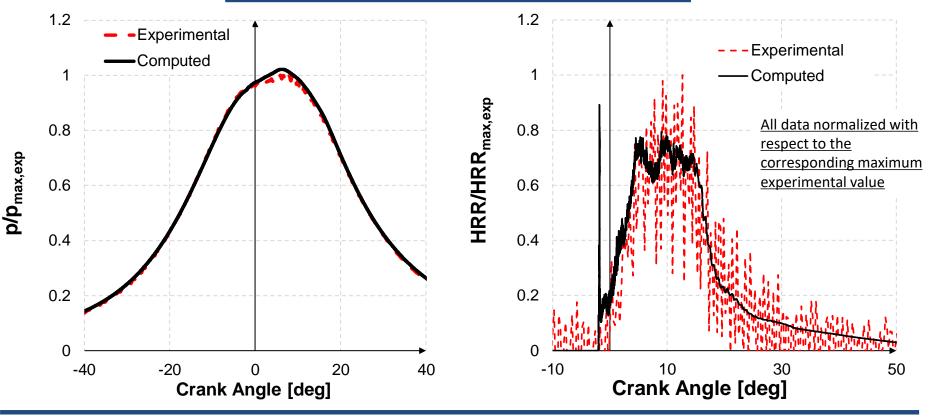
- fuel auto-ignition (cool flame + main ignition)
- peak pressure location, indicated work
- NOx emissions
- fuel energy release

To be done:

- CO emissions (kinetically controlled and not assumed to be at equilibrium conditions)


Conventional Diesel: simulation setup

	Low Load	High Load	
SOI [CAD BTDC]	2	-2	
m _{inj} /m _{inj,full}	0.85	1	
Mesh	deforming, 6	650000 cells	
Fuel type	n-C ₇ H ₁₆ (gas phase) IDEA (liquid properties)		
Tabulated mechanism	n-C ₇ H ₁₆ from LLNL (159 species)		
Tabulation	φ=0.2-3; T=500-12	250 K; p=2-20 MPa	



Conventional Diesel: validation – Low Load

Conventional Diesel: validation – High Load

www.engines.polimi.it

GROUP

Conventional Diesel: validation

Fuel mass balance:

$$\left| \frac{\int_{V} \rho Z dV}{\int_{EVO} \rho dV - \int_{IVC} \rho dV} \right| < 0.2\%$$
$$\left| \frac{\left(\int_{IVC}^{EVO} \dot{Q}_{fuel} d\theta}{\int_{V,EVO} \rho Z dV} \right)}{LHV_{nC_7H_{16}}} \approx 99.5\%$$

Fuel energy balance:

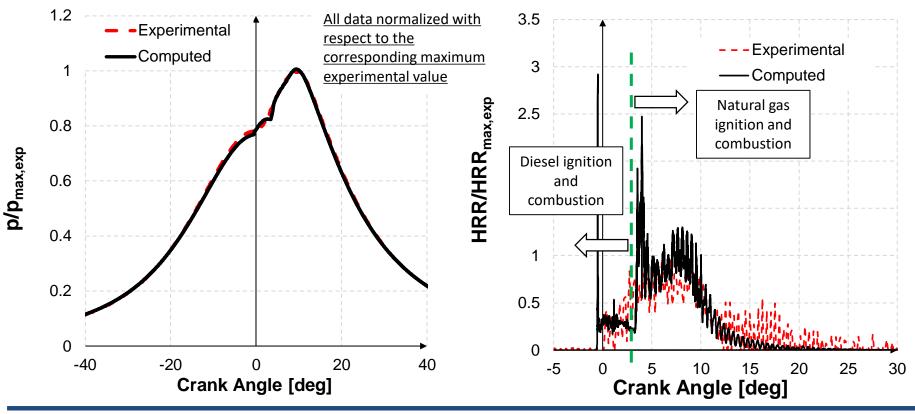
 Consistent results for single fuel mode: fundamental pre-requisite for successful dual fuel combustion simulations

Validation: large-bore diesel engine Dual-fuel mode

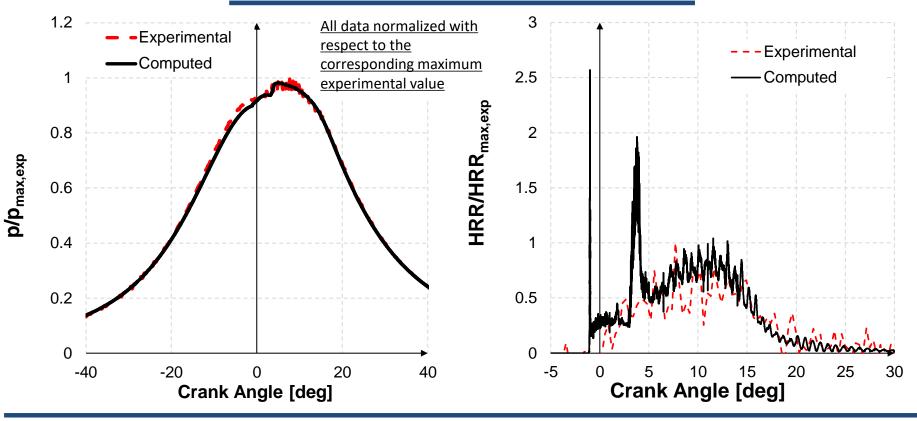
Diesel fuel and natural gas directly injected into the cylinder with different SOI times

	Low Load	High Load
SOI Diesel [CAD BTDC]	-1	-1.5
SOI CNG [CAD BTDC]	1	0

Dual-fuel mode: simulation setup


Diesel fuel type	n-C ₇ H ₁₆ (gas phase) IDEA (liquid properties)
Tabulated mechanism	n-C ₇ H ₁₆ from LLNL (159 species)
Tabulation	<i>φ</i> =0.2-3; T=500-1250 K; p = 2-20 MPa

Natural gas	CH ₄ (gas phase)
Tabulated mechanism	CH ₄ from GRI (53 species)
Tabulation	<i>φ</i> =0.2-3; T=500-1250 K; p = 2-20 MPa



Dual fuel mode: Low-load condition

Dual fuel mode: High-load condition

www.engines.polimi.it

Conclusions

Tabulated kinetics for combustion modeling in CI engines

Summary

- Capability to predict combustion in CI Engines:
 - Conventional Diesel
 - PCCI
 - Dual-fuel
- Consistency with respect to the energy balance

Next steps

- Dual-fuel with turbulence-chemistry interaction:
 - > TPPDF
 - > TFPV
- RCCI combustion
- Spark-assisted combustion

Future work

Tabulated kinetics (homogeneous reactor) combined with further complex flame structures:

- Multi-environment PDF (2 or 3 environments)
- Transported PDF

CO and HC prediction

 NO_x in more complex flame structures

Heavy duty vehicles construction, mining & farming machinery >90 % diesel

Passenger cars and light duty vehicles **EU: 49% diesel**

Should we rely on Diesel?

We have to, they are all around us

Ships >**95 % diesel**

Locomotives EU: 55 % diesel

*S. V. Heeb, 20th ETH conference on Combustion Genereated Nanoparticles

Thanks for

YOUR

attention!!!