3D spray simulation using advanced intra-droplet and interface modeling

TU Darmstadt Mechanical Engineering – Simulation of reactive Thermo-Fluid Systems

TECHNISCHE

Simulation of reactive Thermo-Fluid Systems

Andrea Pati, Christian Hasse

Agenda

- Introduction
- ULF single droplet
- Foam coupling
- Verification

ULF
Thermodynamic
VLE
Single droplet
opportion

FOAM
Kinematic
3D Spray
Spray
For a state of the state o

- Spray A
- Conclusion

Introduction

- Spray evaporation is first step in air/fuel mixture formation
- Spray evolution determines conditions for the following steps
 - Mixture formation in gas phase
 - Flame propagation
 - Pollutant formation

Evaporation / Mixing Sub-Critical

[1]: L. Weiss, A. Peter, M. Wensing, ", Diesel Spray characterization with Schlieren-MiDiesel Spray characterization with Schlieren-Mie Technique", 18th International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics, Lisbon 2016

8 Institute for Simulation of reactive Thermo-Fluid Systems | Prof. Dr.-Ing. Christian Hasse

Agenda

- Introduction
- ULF single droplet
- Foam coupling
- Validation
- Spray A
- Conclusion

Lagrangian method

Particle in cell method (PIC):

- Statistical description
- Follows evolution of parcels
- Each parcel represents collection of identical droplets

ULF

- Flexible framework for ODE/DAE system
- Run-time configurable and adaptable
- Coupling interface to external solver available
- Extended for solve single droplet evaporation with wide range of model

Vapor liquid equilibrium

VLE n-heptane/ethanol, 1 bar, UNIFAC vs ideal

- Strong interacting species
 - Cannot be described with Raoult's law
 - Advanced model required (e.g. UNIFAC)
- Other models are run-time selectable
- Fugacity approach available

Ethanol/Heptane E10 (v/v), d_0 190 μ m, T_{gas} 800 K, T_{liq} 320 K

- Different VLE result in change in evaporation rate
- Effect is relevant in the transient evaporation phase

Ethanol/Heptane E10 (v/v), d_0 190 μ m, T_{gas} 800 K, T_{liq} 320 K

 Gas composition at surface is affected by VLE

- Different models result in distinct droplet evolution
- Species interactions are important

- Thermodynamical model direct affects:
 - Droplet evolution
 - Gas evolution
- Film properties around droplet are influenced by droplet model
- External droplet solver allows to study different model
- No modification in FOAM code necessary

Agenda

- Introduction
- ULF single droplet
- Foam coupling
- Validation

- Spray A
- Conclusion

Coupling

- Fugacity
- Activity coefficients
- Heat capacity

•

ulfParcel

- ulfParcel acts as interface with ULF
- It is responsible for:
 - Interact with foam Lagrangian tracking
 - Store info for breakup/collision/atom.
 - Interact with ULF to solve evaporation

-

Agenda

- Introduction
- ULF single droplet
- Foam coupling
- Validation

ULF Thermodynamic VLE Single droplet droplet FOAM Kinematic 3D Spray Experiment

- Spray A
- Conclusion

Coupling

- Solution of the single droplet outsourced to a specialized solver (liquid, gas film, interface)
- OpenFOAM framework tracks the droplet parcel
 - Injection
 - Breakup
 - Drag
- High flexibility in solution

VALIDATION REQUIRED

- Single droplet
- Mass conservation
- Enthalpy conservation

Heptane, d₀ 1180 μ m, T_{gas} 297 K, T_{liq} 290 K, quiescent env.

- Verification against stand-alone and exp.
- Evaporation rate correct
- One-way coupling correct
 - From ULF to FOAM

[1] Daif et al. Experimental Thermal and Fluid Science 18 (1999) 282-290

Heptane, d_ 1180 μ m, T_gas 297 K, T_liq 290 K, quiescent env.

- Comparison with closed environment
 - 10x10x10 mm
- Saturation slows down evaporation rate
- Two-way coupling correct

Mass conservation

Heptane, d₀ 1180 μ m, T_{gas} 297 K, T_{liq} 290 K, quiescent env.

- Closed system
- Mass conserved

Energy conservation

Heptane, d_0 1180 μ m, T_{gas} 297 K, T_{lig} 290 K, quiescent env.

Lagrangian tracking

Heptane, aachenBomb Case, T_{gas} 800 K, T_{lig} 320 K, p 5 MPa

- Nitrogen environment No combustion
- Only injection and drag
- Coupling does not affect lagrangian tracking
- Injection properties transferred to ulfParcel

Lagrangian tracking

Heptane, aachenBomb Case, T_{gas} 800 K, T_{lig} 320 K, p 5 MPa

- Nitrogen environment No combustion
- Only injection and drag
- Coupling does not affect lagrangian tracking
- Injection properties transferred to ulfParcel

Heat transfer

Heptane, aachenBomb Case, T_{gas} 800 K, T_{lig} 320 K, p 5 MPa

- Only heat transfer
- Spray morphology is unchanged
- Temperature field slight different

→Minor thermal exchange for FOAM+ULF solver

Heat transfer

Heptane, aachenBomb Case, T_{gas} 800 K, T_{lig} 320 K, p 5 MPa

- Only heat transfer
- Spray morphology is unchanged
- Temperature field slight different

→Minor thermal exchange for FOAM+ULF solver

Validation of 3D spray

- The coupling does not affect the spray
- Lagrangian tracking is correct
- Thermal transfer are comparable

Coupling is a suitable technique for spray modelling

Agenda

- Introduction
- Single droplet
- Foam coupling
- Validation

- Spray A
- Conclusion

- Next slides will show some possibilities of this method in describe spray of complex mixture
- AachenBomb
 - ReitzKHRT
 - Cone injection
 - Heptane 90%, ethanol 10% (vol/vol)
 - Mass evaporation

Droplet evolution affected by interface thermodynamic

- Properly choose of the model is crucial for a proper spray simulation
- Run time selection of droplet model is important

Agenda

- Introduction
- ULF single droplet
- Foam coupling
- Validation
- Spray A

Conclusion

Conclusion

- A new method to solve lagrangian spray is introduced
- The parcel is an interface to an external specific solver for single droplet evaporation
- External solver run-time selects different model
 - Liquid
 - VLE
 - Gas film
- Foam manages injection, breakup and tracking
- Conservation of quantities is verified for single droplet
- 3D spray tracking is not affected by the external solver
- Biofuel spray evolution with different model are shown

