Willkommen Welcome Bienvenue

Materials Science and Technology

Additive Manufactured (AM) Open Cell Structures: Promising substrates for Automotive Catalysts

V. Papetti, Msc; P. Dimopoulos Eggenschwiler, Dr. sc techn. ETHZ

Politecnico di Milano, 22.02.2018

- Introduction
- Simulation for accessing potentials of foams
- Comparison honeycomb (HC) / Kelvin cell polyhedra
- Possibilities with AM
- Geometrical Optimization of polyhedral catalyst lattice
- Simulations and measurements on first prototypes
- Manufacturing of vehicle size polyhedral prototypes
- Considerations of real life catalysts

Foam catalyst achieved similar conversion of standard honeycomb using 1/2 of noble metal

Foam reactor

Industrial standard

- Small Heavy Duty truck (Iveco Daily)
- Different coating
- No particular customization

Empa ICEL, test bench, Bach & al., SAE 2011-24-0179

Test Catalyst assembly

*Giani (2005)

structures: real foam CTs and Kelvin cell lattices

Open cells allow freedom in configurations

Can Kelvin Cells outperform honeycombs? Simulations of randomized Kelvin cell lattices and HCs, Same chemical & fluid dynamic assumptions

 $\epsilon = 80-90\%$ Vel(1-50 m/s)

Chan. Size 400-600CPSI, $\epsilon = 73\%$ Vel (1-50 m/s)

Kelvin Cell needs less surface for the same conversion (lower precious metal amount)

Empa

Materials Science and Technology

 Regular Kelvin cells outperform randomized foams

Idea of 3D Printing*: design for features, we analyzed different regular cells

*Ultralight, ultrastiff mechanical metamaterials, Xiaoyu Zheng et al. , Science 344, 1373 (2014)

Cubic cells tested with 2 flow direction straight and at 45 degree

Analytical expressions of Sv in function of ϵ and $\epsilon_{\rm Empa}$ are derived

Fixing (ϵ , d_s), same Sv, but different Lc Higher ϵ at fixed $d_s \longrightarrow$ Lower Sv Higher d_s at fixed $\epsilon \longrightarrow$ Lower Sv

Different porosities, ϵ , can be achieved by changing either L_s , d_s or both

4 geometrical configurations, 4 ϵ (80-95%), 2 d_s (0.5mm,1mm)

Simulations for geometrical optimization: CH_4 oxidation in air is studied

Infinite fast Chemistry, mass transfer limited regime

→ reactingSimpleFoam

Single Region No CHT (3°C),

→ T_{in}=700 K T_w=750 K

X_{CH4}=0.1% Abundance of O₂ P_{out}=P_{amb}

Simulations for geometrical optimization: CH_4 oxidation in air is studied

Empa

Inert specie: N₂

Wash coat not modelled (30 %)

4x2x2 Cells + periodic B.C

no instabilities, laminar flow

Sc=1, $D_{CH4,air}=v$

Transport properties: Sutherland

thermal properties: Janaf table

Perfect gas

SnappyHexMesh

- 1. Cartesian Block Mesh
- 2. Foam Surface (STL file)
- 3. Castellate Mesh
- 4. Snapp to surface
- 5. Add Layer

1 Case = (10⁶) cells 12 hrs in 1CPU

Sample Cubic 45 Cells results:

Optimization of the geometry of the cell

Cubic cells tested with 2 flow direction straight and at 45 degree

Rotated cubic cell is the optimal cell for a lattice structure, higher K and I at all vel Vel (1-15 m/s)

At vel=10m/s Cubic45 requires 4 times less S_w than HC, but 3/2 bigger Volume ($S_{vHC} = 6S_{wCUBIC45}$)

Rotated cubic cell is the optimal cell for a lattice structure at all ε, Higher ε means lower K, but higher I Same d_s

Higher ds means lower K and lower I

BEST: Cubic45, higher ε, lower d_s

3D printing of Al₂O₃: Matching Photopolymer and Empa photoinitiatior

Coating in house (J. Tschudin), Coating adhesion: Satisfactory

3D4

 $\begin{array}{l} L_s = 4mm \\ d_s = 600 \mu m \\ \epsilon &= 0.95 \\ S_v = 353 m^2/m^3 \end{array}$

3D3

 $\begin{array}{l} L_{s}=3mm\\ d_{s}=600\mu m\\ \epsilon\ =0.90\\ S_{v}=630m^{2}/m^{3} \end{array}$

- approx. 40 weight % of coating
- Pt amount: 40-70gr/ft³,
- BET-surface area: 18m²/gr (commercial catalysts 48m²/gr)

D = 12mm L = 20mm Struts with $600\mu m \pm 50\mu m$ diameter, each layer about $50\mu m$ thick, material Al_2O_3

Catalytic performance of samples tested in a model gas reactor

Oven

Infrared spectroscopy

- Small reactor dimensions are unfavorable for the 3D structures with high porosity
- Only low velocities can be tested
- Only small dimensions catalysts can be tested

Measurements confirm simulations: 3D3 with almost identical conversion as HC but 1/4 of the wetted surface

Mass transfer coefficient measurements confirm higher reactivity per surface area

Very low velocity, where HC is advantageous because of fully developed flow 3D outperforms HC at high velocities although with $\frac{1}{4}$ of the surface

Manufacturing vehicle size catalysts is currently an issue

• Manufacturing and stability constraints: restrict possible parameters

Empa

Science and Technolog

 $\epsilon \le 0.9$ d_s ≥ 1 mm Comparison of entire catalysts with identical V: cubic45 higher conversion than HCs with 2 times less surface

For the simulated configurations, no evident disadvantages in pressure drop

First gasoline vehicle application project

Thank You!

Questions?