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                 Large-eddy simulation
● Favre-filtered Navier-Stokes equations

● Smagorinsky model
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Introduction
                 FSC combustion modeling

→ Flame propagation is modeled by a transport equation for the            
     progress variable.
→ Flame wrinkling is described by an algebraic model.
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→ Transport equation for mixture fraction variance 
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Moving mesh strategy
● Work flow
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Engine Modeling

➔ Whole process is automated 
with shell scripts

➔ Works in parallel
➔ Whole cycle (720 CAD)

CAD

Block mesh

Snappyhex 
mesh
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Moving mesh strategy

● OpenFOAM dynamic grid motion solver with topological changes

➔ Keeps track of grid points positions
➔ Calculates grid point velocities
➔ Updates grid points positions
➔ Mesh deformation dealt with mapping

● Laplace equation for mesh motion
 (Jasak and Tukovic 2006)
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Engine Modeling
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Chalmers optical engine    

23/02/2018

Engine Modeling

Bore  83 mm
Stoke  90 mm
Compression ratio  10.2
Intake valve dia.  33 mm
Exhaust valve dia.  28 mm
IVO/IVC  340/600 CAD
EVO/EVC  105/365 CAD
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Engine Modeling

Grids: Unstructured grids with local mesh refinement

Meshing: Automated meshing + mapping

Mesh motion: Moving grids without topological changes

Grid resolution: ~1 mm, and < 0.05mm near valve

Flow solver: Compressible (pressure based)

Turbulence: Standard Smagorinsky model (Cs=0.2)

Spatial discretization: 2nd order CDS + TVD

Temporal discretization: 2nd order implicit backward

Pressure BC: Time varying pressure Bcs

Temperature BC: Iso-thermal walls

Numerical setup
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Results
Work flow

1. Cold flow simulation
    to generate turbulent flow field

2. Reactive simulation
    stratified engine operation under different levels of stratification as specified in table

Engine 
point

Inj. time
(°bTDC)

Ign. time 
(°bTDC)

Dur.
(°CA)

λ Imep 
(bar)

1 18 15 4 2.6 3.6

2 20 16 4 2.6 3.8

3 32 20 5 1.85 5

Chalmers



Cold flow simulation
(streamlines)
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Cold flow simulation
(pressure traces)

Intake pressure Exhaust pressure
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Results
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Cold flow simulation
(flow fields)
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480 CAD

540 CAD

605 CAD

670 CAD

➔ The instantaneous flow fields are shown on 
cylinder symmetry plane during intake and 
compression stoke.

➔ Large turbulent structures formed during the 
intake stoke.

➔ Large turbulent structures are broken into 
small features.

➔ Smaller structures contribute more to flame 
wrinkling than large structure.



Cold flow simulation
(velocity)
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Reactive simulation
(Injection and spark ignition)

Combustion mode: stratified 

Injector: hollow cone 

Flow solver: Compressible (pressure based)

Combustion model: FSC combustion model

Time discretization: 2nd order backward

Numerical discretization: 2nd order CDS + TVD

Heat loss: Isothermal wall
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Effect of turbulent mixture fraction fluctuations on pressure traces

→ Early injection shows almost no   
     dependency of mixture fraction variation      
     because there is enough time for turbulent  
     mixing to create a homogeneous mixture.

→ Late injection shows considerable    
    variation in pressure traces.

→ Late injection shows different peak   
    pressure values.

Early injection: inj.= 119°bTDC, ign=20°bTDC, λ=1.15
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Engine 
point

Inj. time
(°bTDC)

Ign. time 
(°bTDC)

Dur.
(°CA)

λ Imep 
(bar)

1 18 15 4 2.6 3.6

2 20 16 4 2.6 3.8
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     Comparison with measurements

→ Case-1 show good agreement with measurement.

→ Case-2 and 3 over predict the peak pressure.

→ The ignition model is based on approximation of 
     the initial flame kernel diameter.

→ Wrong estimation of in-cylinder trapped mass 
     which can only be measured through the flow-meter 
     of test bench, which unfortunately does not exist.

Results

Engine 
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Flame propagation
(stratified combustion case-2)

→ At initial stage, flame zone is over-     
     predicted.

→ Qualitatively good agreement with      
     average OH images.

→ Strong dependence on turbulence      
     level.

→ Need more cycles for the accurate     
     prediction.
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Results



Summary

Chalmers

● Pressure variation for three diverse case of different loads were validated 
against experiment.

● Pressure rise with and without considering mixture fraction fluctuations 
shows considerable variation.

● Results revail that the mixture fraction variance for early fuel injection     
does not affect the burning rate.

● For late fuel injection, mixture fraction variance is relevant and                     
significantly affects the burning rate.

● Computed pressure traces agree well for low load and late injection, but      
for late injection with high load pressure is slightly over-predicted.
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Thank you
for your attention!
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