Willkommen Welcome Bienvenue

Materials Science and Technology

Simulation of Heat and Mass Transfer Phenomena in Additive Manufacture Open Cell structures for Automotive Catalyst Applications

P. Dimopoulos Eggenschwiler, Dr. sc techn. ETHZ, V. Papetti, Msc.

Milano, Two-day Meeting on Simulations Using OpenFOAM Technology, 13.02.2020

Additive Manufactured catalytic converters and microwave heating for zero environmental impact

Currently, major challenges are: Cold Starts and High Exhaust Mass Flow. With contradictory requirements:

- lower catalyst thermal inertial (cold starts)
- bigger catalyst converter (high flow rate)

Further critical conditions are long low load operation, typical of hybrid powertrain systems

Focus: structures with high heat and mass transfer characteristics, as well as low flow through resistance

Catalyst performance under mass transfer limitation (steady state)

Simulations for geometrical optimization: CH_4 oxidation in air is studied

 Infinite fast Chemistry, mass transfer limited regime —> Steady state
____ reactingSimpleFoam

Single Region No CHT (<3°C),
T_{in}=700 K T_w=750 K

- Homogeneous reaction non considered,
- Heterogeneous reactions modelled as B.C.

Oxidation of methane

 $X_{sCH4}=0$

Other species : $\frac{\partial X_i}{\partial n} = \alpha_i \frac{M_i}{M_{CH4}} \frac{\partial X_{CH4}}{\partial n}$

Inert specie: N₂

- 4x2x2 Cells + periodic B.C
- Wash coat not modelled

Standard Mesh with increasing resolution towards Empa the surface

- 1. Cartesian Block Mesh
- 2. Foam Surface (STL file)
- 3. Castellate Mesh
- 4. Snapp to surface
- 5. Add Layer

Sample Cubic 45 Cells results:

Inert Specie: N₂

Optimization of cell geometry

1. Rotated cubic cell is the optimal cell for a lattice structure, higher K and I at all velocities

At vel=10m/s C45 requires 4 times less S_w than HC, but 3/2 bigger Volume ($S_{VHC} = 6S_{WCUBIC45}$) Performance index, I, according to Groppi: $\Delta P \cdot \rho \cdot U$

2. Rotated cubic cell is the optimal cell for a lattice tempa structure at all ϵ ,

Higher ε means lower K, but higher I

ε (0.8-0.95), same d_s

3. Lower ds means higher K and higher I

ε (0.8-0.95), ds (0.5-1) mm,

Mass Transfer

conversion/pressure drop trade

$$K = -\frac{\ln(1-\eta)}{S_v V/Q_{in}}$$
$$S_w = S_v V \propto 1/K$$

BEST: Cubic45, higher ε, lower d_s

Manufacturing, canning and testing of real size polyhedral catalyst substrates

 Manufacturing and stability constraints: restrict possible parameters

 $\epsilon \le 0.9$ d_s ≥ 1 mm

- Hybrid method: AM of the stamp, REPLICA method for the substrates
 - Ls = 3.9 mm $d_s = 1.2 \text{ mm}$ $\epsilon = 0.8$ Sv= 743 m²/m³

We have succeeded in almost reaching the benchmark, the over years developed product has

still superior performances **REF HC** HC AM 1/5PGM V, V. Ref.Ka 1/5 Sw, Sw, V, 3dKat PGM 1/5 PGM Sw, Vergle 1/5PGM -15 % -1% -5 % 100% 100% 100% 90% 90% 90% 80% 80% 80% 70% 70% 70% 60% 60% 60% 50% 50% 50% Bag 1 Bag 2 Bag 3 Total Bag 1 Bag 2 Bag 3 Total Bag 1 Bag 2 Bag 3 Total

T.HC [%]

NOx [%]

CO [%]

AM have lower pressure loss

Manufactured Cordierite 3D catalysts had a higher strut diameter than anticipated

$$\varepsilon = \frac{V_o}{V_{TOTAL}}$$

$$S_V = \frac{S_W}{V_{TOTAL}}$$

Comparison of entire catalysts with identical V: cubic45 higher conversion than HCs with 2 time less surface

For the simulated configurations, no evident disadvantages in pressure drop

Catalyst performance in transient cold starts

OpenFOAM full-scale, multi region, converter SIMULATIONS: CO oxidation in DOC

From micro scale simulations or

experimental correlations: Coupled SOLID-FLUID Geometry model Permeability model Heat transfer models Mass transfer model ٠ **Reaction models** SOLID **Bulk gas model** AM strucutre **Gas reactions** mid position heat mass Near wall gas model Washcoat model heat Substrate model **FLUID Surface reactions**

Case study: exhaust inflow mF=const with $TF_{in}(x=0,t)=const > TS(t=0) 373K < TF_{in}(x=0,t) < 410K$ 260K < TS(t=0) < 360K

In the entrance, solid is heated up, downstream the fluid is cooled down

 TF_{in} =425K TS(t=0s)=260K m_F=0.0172kg/s

Heat convected is highest in the upstream, however the duration of the heat exchange increases in the downstream: almost homogeneous energy exchange

$$l_{\text{conv,i,t}} = \frac{\dot{m}_{F}c_{PF}}{\Delta V} (T_{F,i,t} - T_{F,i+1,t})$$

Introduction of dimensionless time, space and temperature differences

$$\theta_{S} = \frac{T_{S} - T_{0}}{T_{F,in} - T_{0}} \qquad \theta_{F} = \frac{T_{F} - T_{0}}{T_{F,in} - T_{0}} \qquad \xi = \frac{4Nu\lambda_{F}x}{\dot{m}_{F}c_{PF}} = NTU_{\theta} \qquad \tau = \frac{4Nu\lambda_{F}t}{A_{S,FRONT}\rho_{S}c_{S}}$$

$\theta_{\rm F}$ is neither a function of $T_{\rm S}(t=0)$ nor $T_{\rm Fin}$, $\theta_{\rm F}$ is a function of length and $m_{\rm F}$

Heat up can be described as an exponential function of τ/ξ

Numerical Simulations lead to new catalyst structures in combination with new manufacturing techniques

- Worldwide first AM manufactured catalyst converter has been tested on a vehicle (manufacturing, coating, mechanical stability, integration)
- Conversion characteristic with 1/5 of precious metals is good almost on the level of the benchmark HC
- Flow resistance lower than benchmark HC
- Experiments confirmed simulation results

Understanding the heat up inside the catalyst is important for cold start reduction

- In the entrance, solid is heated up, downstream the fluid is cooled down
- The introduction of dimensionless temperature differences, time and space evidences the self similarity of the catalyst heat up before reactions start
- The catalyst heat up can be approximated analytically with a double logarithmic function in dimensionless coordinates
- Evaluation and assessment of preheating strategies

Thank You!

Questions?