Large Eddy Simulations of Supercritical and Transcritical Jet Flows using Real Fluid Thermophysical Properties

- F. Rahantamialisoa, B. M. Ningegowda, J. Zembi, Prof. M. Battistoni Univ. Perugia
- A. Pandal Universidad de Oviedo
- Prof. Hong Im KAUST
- Prof. H. Jasak University of Zagreb PSB

🦲 KAUST

UNIVERSITÀ DEGLI STUDI **DI PERUGIA**

Fourth Two-day Meeting on Internal Combustion Engine Simulations Using OpenFOAM® Technology 13 February 2020, Politecnico di Milano.

Outline

Background and Motivations

Model Presentations

Validations

• 2D n-dodecane/nitrogen jet flows

Conclusions and Work in Progress

Backgrounds and Motivations

- Challenge of emission pollutant control within the regulations which are more and more strict
- Needs for more efficient and cleaner combustion leading to the concept of increasing the operating pressure of combustion chamber
- Transcritical and supercritical jet conditions applied in ICE, gas turbine and rocket engines
- Multi-components *real-fluid* spray in hot turbulent flows are under explored
- Lacks of detailed understandings of the non-linear physics

P.C. Ma et al. / Journal of Computational Physics 340 (2017) 330-357

 Governing equations for a two-phase single-fluid compressible flow, in non-reacting conditions

Mass:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho u) = 0$$

Momentum:

$$\frac{\partial(\rho u)}{\partial t} + \nabla \cdot (\rho u u) = \nabla \cdot (-pI + \tau)$$

Energy:

$$\frac{\partial(\rho h_T)}{\partial t} + \nabla \cdot (\rho h_T u) = \frac{\partial p}{\partial t} + \nabla \cdot (\tau \cdot u) - \nabla \cdot q \quad \text{with} \quad h_T = h + (1/2)u^2$$

Species:

$$\frac{\partial(\rho Y_i)}{\partial t} + \nabla \cdot (\rho Y_i u) = \nabla \cdot J_i$$

• Equation of State:

Peng Robinson cubic EoS to model non ideal gas behavior

$$p(v,T,x_i) = \frac{RT}{v-b} - \frac{a\alpha}{v^2 + 2vb - b^2}$$

with a linear average of the critical properties based on mole fraction as mixing rules.

$$a = 0.457236 \frac{R^2 T_c^2}{P_c} \qquad b = 0.077796 \frac{RT_c}{P_c} \qquad \alpha = \left[1 + c_\omega (1 - \sqrt{T_r})\right]^2$$

$$c_{\omega} = \begin{cases} 0.37464 + 1.5422\omega - 0.26992\omega^{2}, if\omega \le 0.5\\ 0.3796 + 1.485\omega - 0.1644\omega^{2} + 0.01667\omega^{3}, \omega > 0.5 \end{cases}$$

- Thermodynamics quantities
 - Caloric properties = ideal gas value + departure function
 - > Departure functions are used to account for the deviation from the ideal-gas behavior
 - Example: Sensible enthalpy

$$h(p,T,x_{i}) = \underbrace{h_{0}(T,x_{i})}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1-\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1+\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1+\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1+\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1+\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1+\sqrt{2}b\right)}{\nu+\left(1+\sqrt{2}b\right)}\right)}_{RT+\frac{1}{2\sqrt{2}b}ln\left(\frac{\nu+\left(1+\sqrt{2$$

- Transport properties
- Chung Method was implemented to evaluate the dynamic viscosity and the thermal conductivity of real fluids
- > Straightforward calculation requiring only critical properties

$$\mu(p,T) = \mu^*(p,T) \frac{36.344(MT_c)^{1/2}}{V_c^{2/3}} \quad ; \qquad \mu^*(p,T) = \frac{(T^*)^{1/2}}{\Omega_v} F_c\{[(G_2)^{-1} + E_5 y]\} + \mu^{**}$$

(E_0 to E_9 are linear functions of ω)

Better prediction for a wide range of fluid states accounting for shapes and polarities of fluids

 $F_c = 1 - 0.2756\omega + 0.059035\eta_r^4 + c$

• Solver: Modified reactingFoam

- Pressure based solver
- Update of species, enthalpy and thermodynamic properties at each PISO loop

Implicit LES

- No SGS model used in the current simulations
- Laminar on fine grids

Validations

2D Mayer et al. 2003 exp. test case with cryogenic L-N₂ jet into warm G-N₂

Injected liquid	cryogenic nitrogen
Computational domain, $54d \times 27d$	120 mm × 60 mm
Diameter of nozzle jet, d	2.2 mm
Jet inlet velocity, u_{inj}	4.9 m/s (uniform)
Chamber pressure, p_{amb}	4 MPa
Chamber temperature, T_{amb}	298 K
Jet temperature, T_{inj}	128.5 K

Critical properties of N_2 :

- P_{cr} = 3.39 MPa
- $T_{cr} = 126.2 \text{ K}$

Mayer, W., Telaar, J., Branam, R., Schneider, G., & Hussong, J., "Raman measurements of cryogenic injection at supercritical pressure." Heat and Mass Transfer 39(8): 709-719, 2003.

Example of simulation results

Variations of thermophysical quantities of N₂ with different conditions

Time averaged centreline density for the 3 grids

- Good agreement of jet core density with experimental data
- Ealier jet dispersion with finer grids

Large Eddy Simulations of Supercritical and Transcritical Jet Flows using Real Fluid Thermophysical Properties

2D n-dodecane/nitrogen jet flows

Injected fluid	n-dodecane
Ambient gas	nitrogen
Computational 2D domain, <i>L</i> × <i>H</i>	5 mm × 2.5 mm
Diameter of nozzle jet, d	0.1 mm
Jet inlet velocity, u_{inj}	200 m/s (uniform)
Chamber temperature, T_{amb}	972.9 K
Chamber pressure, p_{amb}	6.0 MPa and <u>11.1 MPa</u>
Jet inlet temperature, T_{inj}	600 K, <u>658.2 K</u> and 736.8 K

Critical properties of $C_{12}H_{26}$:

- P_{cr} = 1.8 MPa
- $T_{cr} = 658.2 \text{ K}$

Effect of inlet jet temperature

 Lower temperature case crosses the two-phase region for a substantial part of the CFD states

 Intermediate case touches the VLE curves but remaining basically above

Effect of inlet jet temperature

Effect of inlet jet temperature

Effects of ambient pressure

Time: 3.50e-05 Time: 3.50e-05 **Density gradient** (kg/m^4) Grad. rho (kg/m4) Grad. rho (kg/m4) 0.00e+00 1e+7 2e+7 0.00e+00 1e+7 3e+7 4e+7 5.00e+07 2e+7 4e+7 500e+03e+7 Time: 3.50e-05 Time: 3.50e-05 **Mole Fraction** 1000 -- Bubble point curve @ 11.1 MPa Dew point curve @ 11.1 MPa 900 Bubble point curve @ 6.0 MPa X_N2 X N2 Dew point curve @ 6.0 MPa CFD: 11.1 MPa, T_{C12H26} = 658.2 K, T_{N2} = 972.9 K 0.00e+000.25 0.75 0.00e+000.25 0.75 .00e+00 800 CFD: 6.0 MPa, T_{C12H26} = 658.2 K, T_{N2} = 972.9 K 700 T [K] <u>6 MPa</u> <u>11 MPa</u> 600 500 The lower pressure case shows marked subcritical features, 400 such as strong ligament persistence 300 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 X_{N2} [-]

Conclusions

 Pressure based numerical formulation was able to capture density and temperature without severe spikes of pressure and velocity

 Capability to handle multi-species mixing processes accounting for real-fluid properties

Current framework has adequate accuracy and potential for further developments

Work in progress

• Implementing more advanced mixing rules

$$a\alpha = \sum_{i} \sum_{j} a_{ij} \alpha_{ij} x_i x_j \qquad b = \sum_{i} x_i b_i \qquad a_{ij} \alpha_{ij} = \sqrt{a_i a_j \alpha_i \alpha_j} (1 - k_{ij})$$

• Implementing multi-species mass diffusivity models based on binary coefficients

- Including phase stability tests and phase splitting
- Further improving the solver efficiency

13 February 2020, Department of Energy, Politecnico di Milano