Towards a Euler-Euler multi-fluid solver for dense spray applications

Robert Keser, Hrvoje Jasak, University of Zagreb

Michele Battistoni, University of Perugia

Alberto Ceschin, Hong G. Im, King Abdullah University of Science and Technology

Predictive Modelling and Experimental Validation of Multi-component Dense Spray Dynamics

KAUST

University of Perugia Department of Engineering

University of Zagreb FAMENA

University of Perugia Department of Engineering

develop and establish high-fidelity modelling and experimental capabilities to predict and characterize multi-component dense fuel sprays

KAUST

University of Perugia **Department of Engineering**

University of Zagreb FAMENA

DNS Euler-Euler

Main parts of the presentation

1. DNS solver

- Solver description
- Preliminary results
- 2. Euler-Euler solver
 - Solver description
 - Sub-model validation
 - Preliminary spray simulations

None

$$\begin{split} \overline{\mathbf{M}}_{\mathrm{d},i} &= \alpha_{\mathrm{d},i} \overline{C_{\mathrm{d},i}}_{4}^{3} \frac{\overline{\rho}_{\mathrm{c}}}{d_{i}} |\overline{\mathbf{U}}_{\mathrm{r},i}| \overline{\mathbf{U}}_{\mathrm{r},i} \qquad \mathrm{drag} \\ &+ \alpha_{\mathrm{d},i} C_{\mathrm{l}} \overline{\rho}_{\mathrm{c}} \overline{\mathbf{U}}_{\mathrm{r},i} \times \left(\nabla \times \overline{\mathbf{U}}_{\mathrm{c}}\right) \qquad \mathrm{lift} \\ &+ \alpha_{\mathrm{d},i} C_{\mathrm{vm}} \overline{\rho}_{\mathrm{c}} \left(\frac{D_{\mathrm{c}} \overline{\mathbf{U}}_{\mathrm{c}}}{Dt} - \frac{D_{\mathrm{d},i} \overline{\mathbf{U}}_{\mathrm{d},i}}\right) \qquad \mathrm{virtual\ mass} \\ &- C_{\mathrm{d},i} \frac{3}{4} \frac{\overline{\rho}_{\mathrm{c}}}{d_{i}} \frac{\nu_{\mathrm{c}}^{\mathrm{t}}}{\sigma_{\alpha}} |\overline{\mathbf{U}}_{\mathrm{r},i}| \nabla \alpha_{\mathrm{d},i} \qquad \mathrm{turbulent\ drag} \\ &C_{\mathrm{d},i} = C_{\mathrm{d}0,i} \left(\exp\left(3.64\alpha_{\mathrm{d},i}\right) + \alpha_{\mathrm{d},i}^{0.864}\right) \\ & \text{where} \\ &C_{\mathrm{d}0,i} = \exp\left(-51.8 + 13.2\ln(\mathrm{Re}_{i}) - 0.824\left(\ln(\mathrm{Re}_{i})\right)^{2}\right) \end{split}$$

DNS

DNS solver

- Incompressible two-phase flow (fuel and air)
- Discontinuity at the interface due to the density jump and surface tension effects taken into account with the Ghost Fluid Method
- •Geometric Volume-of-Fluid method used to represent and reconstruct the sharp interface
- Adaptive Grid Refinement with Dynamic Load Balancing

Perform AGR if AGR performed and $N_{min}/N_{max} < \Delta$ then Perform DLB end if Solve pressure correction equation while $i_{SIMPLE} < N_{SIMPLE}$ do Solve momentum equation while $i_{PISO} < N_{PISO}$ do Solve pressure equation end while Advect interface Assemble GFM discretisation data end while

Time: $0.1 \ \mu s$

- Base cell size is 40 microns
- Four refinement levels are used, yielding 2.5 microns near the interface
- Grid is pre-refined near the interface and in the nozzle
- Started from 0.7M cells and ended up with 133M cells

n-dodecane at 150MPa

Euler-Euler

Euler-Euler solver

- Incompressible multi-fluid solver for polydisperse flows
 - multi-fluid two-phase, but arbitrary number of droplet classes
 - method of classes in the Euler-Euler framework
 - polydisperse droplets can vary in size
 - every class has a momentum and phase continuity equation
 - mixture pressure assumption all phases/fluids share the same pressure equation

Euler-Euler solver

- Inter-facial momentum transfer • Drag, lift, virtual-mass, turbulent dispersion force (wall-lubrication)
- •Mixture $k \epsilon$ turbulence model (generalised for multi-fluid)
- Breakup and coalescence functionality

Time: 0.10 s

Basic multifluid model

> Interfacial momentum transfer

Breakup: Luo and Svendsen Model Coalescence: Prince and Blanch Model

TOPFLOW (Transient Two Phase Flow Test Facility.)

Breakup and coalescence

Breakup: Luo and Svendsen Model Coalescence: Coulaloglou and Tavlarides model

Evaporation model

-0.02

-0.019

-0.018

-0.017

-0.016

-0.015

-0.014

-0.013

-0.012

-0.011

-0.009

-0.008

-0.007

-0.006

-0.005

-0.004

-0.003

-0.002

-0.001

-0

-0.0Z Axis

Interfacial momentum transfer

Multiphase turbulence model

Multiconoonent

Evaporation model

Acknowledgements

Hrzz **Croatian Science** Foundation

 Croatian Science Foundation DOK-01-2018

King Abdullah University of Science and Technology OSR-2017-CRG6-3409.03

Questions?

Robert Keser University of Zagreb Faculty of Mechanical Engineering and Naval Architecture robert.keser@fsb.hr

