Fourth Two-Day Meeting on IC engine Simulations using the OpenFOAM technology

A numerical and experimental investigation of bifuel RCCI combustion and TCRCI, a temperature controlled single fuel compression ignition combustion

Marmotors s.r.l

T. Lucchini

Department of Energy, Politecnico di Milano

Summary

- Background on Temperature Controlled Reactivity Compression Ignition :
 - A Low Temperature Combustion system that has the potential of high efficiency and low soot and NO_x emissions
 - A very interesting combustion system to compete at LeMans in LMP1 class
- Experimental and numerical activity in the period 2016-2019
 - Engine modifications and test cell layout
 - Preliminary CFD analysis on combustion
 - Test program and data analysis at Dec. 2019
- Numerical simulation of RCCI and TCRCI in OpenFOAM® and first correlation with experimental analysis

Acknowledgments

A particular mention for the preparation of the paper and for the activity performed:

From Politecnico di Milano – ICE Group

Qiyan Zhou PhD Student Filippo Gazzola MS Student

From Marmotors s.r.l.

Marco Buttitta Paolo Cotellessa Simone Marmorini

My background: motorsport, just motorsport.

IC engine in F1:

- From 1990 to 2013: Naturally Aspirated engine V12, V10, V8 with no interest on BSFC but with very high efficiency (about 35%)7
- From 2014 on: Very efficient electrified power-trains (about 50%)

2010 F1 engine:

 Lean Running NA engine with Kinetic Energy Recovery System (60kW – 400 kJ per lap - no refuelling during racing) - BSFC 235 g/kW

2014 Fuel flow controlled Turbocharged Engine with ERS:

 Electric boost through MGUK (120kW-4MJ per lap and energy recovery from electrically assisted turbo-charger MGUH (no limitation) - BSFC 182 g/kW

Efficiency increase in SI engines

Compression ratio increase

Theoretical efficiency of ideal $\lambda = 4.0$ 65constant volume process λ = 2.0 [%] λ = 1.5 Target area for 60 boosted lean $\lambda = 1.0$ operation 55 $\lambda = 0.9$ Lean operation with 50higher compression ratio 45 Stoichiometric Diesel -40 gasoline state of the engine art 35 10 12 14 16 18 20 6 8 **Compression Ratio**

MARMOTOR

Figure 1. Schematic visualization of the auto-ignition potential.

Spark-assisted combustion

Figure 2. Pre-chamber spark plug for a gas engine [12]

Mazda Skyactive-X concept (SPCCI combustion)

Efficiency increase and emission control

Advanced low-temperature combustion modes

L. Marmorini

GROUP

Advanced combustion modes for direct-injection engines

PCCI	Direct	Diesel, biodiesel	pressure <i>m</i> _{inj} HRR TDC angle	~50%	HC and CO	YES
RCCI	Direct and PFI	Fuel 1: Diesel Fuel 2: Gasoline, CNG, ethanol	pressure \dot{m}_{inj} HRR TDC angle	~55%	HC and CO	YES
SACI	Direct or PFI	Gasoline, CNG, ethanol	SA //HRR TDC angle	~50%	HC and CO	YES

L. Marmorini

RCCI Combustion concept

L. Marmorini

TCRCI Combustion concept

GROUP

MARMOTOI

TCRCI Combustion concept

The combustion is a compression ignition of an extremely lean mixture that is triggered by a small injection of heated fuel.

Two series of injections of the same fuel at two different injection temperatures. Cold Injection and Hot Injection.

The injection system is designed for heating of only a small percentage of the injected fuel.

• reduced EGR and pumping losses.

The trigger is not obtained with a different fuel like most of current proposals (RCCI) or by the ignition of a rich mixture zone close to the spark plug (Mazda Sky Active X and VW SACI).

The single fuel should have a high RON (higher than 70)

- no high pressure injection
- simplified aftertreatment

TCRCI Combustion concept

Possibile operation with conventional gasoline direct injection technology using also biofuels.

• A small amount of heated fuel is required

Cold injection must produce an almost homogeneous mixture

Hot injection fuel temperature variation fro 350 to 500°C depending on engine speed and load.

The fuel heating can occurr before the hot injector or within the injector itself.

The system can have a <u>low-pressure pump for PFI</u> (port fuel injection - cold injection) <u>and high-pressure pump for direct injection</u> (both cold and hot). This is the typical injection system of a conventional GDI engine as pressure higher than 500 bar are not foreseen.

Both a single shot injection or a multiple shots one can be considered.

Energy required to heat up the fuel

			Heated Fuel Temperature [deg. C]							
		200	250	300	350	400	450	500		
	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		
	5	0.3	0.5	0.6	0.8	1.0	1.2	<u>1.4</u>		
_	10	0.5	0.9	1.3	1.7	2.0	2.4	2.8		
%] p	20	1.1	1.8	2.6	3.3	4.0	4.8	5.5		
eate	30	1.6	2.7	3.8	5.0	6.1	7.2	8.3		
el H	40	2.2	3.6	5.1	6.6	8.1	9.6	11.1		
of Fu	50	2.7	4.6	6.4	8.3	10.1	12.0	13.8		
ent o	60	3.2	5.5	7.7	9.9	12.1	14.4	16.6		
Perc	70	3.8	6.4	9.0	11.6	14.2	16.7	19.3		
_	80	4.3	7.3	10.3	13.2	16.2	19.1	22.1		
	90	4.9	8.2	11.5	14.9	18.2	21.5	24.9		
	100	5.4	9.1	12.8	16.5	20.2	23.9	27.6		

30

CFD simulations: Lib-ICE

- Set of libraries and solvers for IC engine modeling using OpenFOAM technology:
 - Mesh motion for complex geometries
 - Combustion

GROUP

- Lagrangian sprays + liquid film
- Unsteady flows in intake and exhaust systems: plenums, silencers, 1D-3D coupling.
- Reacting flows in after-treatment devices: DPF, catalyst, SCR.

Marmorini

CFD modelling of TCRCI/RCCI combustion process

Tabulated kinetics (single or dual fuel of variable composition): Lookup table generator

CFD solver: tabulated kinetics ensures reduced computational time and results accuracy:

- <u>suitable tool to study and design engines with</u> <u>advanced combsution concepts.</u>

GROUP

TCRCI assessment at constant volume conditions

GROUP

- CDC Fuel: n-C12H26 Diesel surrogate
- TCRCI Fuel: Gasoline surrogate (56% iso-octane, 28% toluene, 17% n-heptane)
- Mechanism: <u>CDC</u>: Yao <u>TCRCI</u>: Frassoldati

Pressure [bar]	20-250 (step 30)
Temperature [K]	600-1300 (step 50)
Equivalence Ratio	0-3 (finer resolution close to φ=1)

TCRCI assessment at constant volume conditions

TCRCI assessment at constant volume conditions

L. Marmorini

GROUP

Light-duty engine: combustion mode comparison

Simulation set-up

<u>Mesh</u>

1/8 of the combustion chamber with reduced compression ratio

Injection

SOI [CAD]	-25
Injection Pressure [bar]	1550
Injection Temperature [K]	313
DI mass [mg]	3.22

PCCI

- Fuel: n-C7H16 Diesel surrogate
- Mechanism: Curran (159 species)

n [rpm]	2000
BMEP [bar]	5
p@IVC [bar]	1.3
T@IVC [K]	403.52
EGR	~40%
Equivalence Ratio	~0.8

RCCI/TCRCI/HCCI

- Fuel:
 - <u>DI</u>: n-C₇H₁₆ (RCCI) or Gasoline surrogate (TCRCI)
 - <u>PFI</u>: Gasoline surrogate
- Mechanism: Faravelli (156 species)

SOI [CAD]	variable
Injection Pressure [bar]	500
Injection Temperature [K]	500
DI mass [mg]	0-3.22

n [rpm]	2000
BMEP [bar]	5
Pressure at IVC [bar]	1.3
Temperature at IVC [K]	403.52
EGR	0%
Equivalence Ratio	0-0.42

Light-duty engine: RCCI combustion evaluation

L. Marmorini

Light-duty engine: TCRCI combustion evaluation

L. Marmorini

Light-duty engine: comparison of combustion modes

Light-duty engine: comparison of combustion modes

Summary

Promising results of single-fuel TCRCI combustion feasibility in the light of heated injection control.

TCRCI is RCCI-comparable in terms of:

- efficiency;
- auto-ignition control;
- pollutant emissions.

TCRCI/RCCI engine experiments

- Development of an Open ECU (Spark Alma Automotive)
- Transition from Bosch ECU to Spark ECU

• **3+1 Engine** (retrofit of a commercial 2.0 lt. JTD FCA engine)

Modified engine (3+1)

Tests in RCCI and TCRCI mode

Base engine

TCRCI/RCCI engine experiments

Modified inlet collector

Test cell layout

L. Marmorini

RCCI Experiments

Indicated data

Operating points with G.I.E. higher than 50%

TCRCI Experiments

3+1 Engine (TCRCI Layout)

TCRCI vs RCCI Experiments

Gross indicated efficiency as function of the IMEPH TCRCI experimental data

RCCI Engine simulations

	low load		mediu	m load	high load		
test	18101	8_p12	18102	24_p6	18101	7_p27	
GIMEP	4.8	bar	8.8	bar	14.5	bar	
RPM	2000	1/min	2000	1/min	3500	1/min	
m_inj_tot	10	mg	20	mg	30	mg	
PFI	70	%	92	%	82	%	
PFI_qty (gasoline)	7	mg	18.4	mg	24.6	mg	
DI_qty (diesel)	3	mg	1.6	mg	5.4	mg	
split	20	%	30	%	0	%	
DI_split1	0.6	mg	0.48	mg	0	mg	
DI_split2	2.4	mg	1.12	mg	5.4	mg	
SOI1	62	°CA bTDCF	75	°CA bTDCF	-	°CA bTDCF	
SOI2	42	°CA bTDCF	55	°CA bTDCF	35	°CA bTDCF	
Inj_time1	238	μs	230	μs	-	μs	
Inj_time2	311	μs	255	μs	356	μs	
T_fuelDI	40	°C	42	°C	43	°C	
p_Rail	1095	bar	1210	bar	1600	bar	
EGR_ext	0	%	25	%	38	%	
EGR_tot (ext+res)	8.3	%	28	%	41	%	
O2 mass fraction	0.2261		0.1968		0.1783		
N2 mass fraction	0.7685		0.7659		0.7612		
CO2 mass fraction	0.0039		0.027		0.0438		
H2O mass fraction	0.0015		0.0103		0.0167		
p_IVC (-153°CA)	170000	Ра	170000	Ра	310000	Ра	
T_IVC (-153°CA)	350	К	355	К	380	К	
lambda	2.885		1.374		1.057		
lambda	5.2		2.1		1.9		
lambda_premix	4.121		1.493		1.289		
phi_premix	0.2426		0.6696		0.7758		

DI Injector geo	ometry	
Inj_n_holes	7	
Spray angle	148	0
D_hole	0.146	mm

Buttitta M., "Analisi teorico sperimentale del Sistema di combustione TCRCI", Master thesis in Mechanical Engineering, University of Modena and Reggio Emilia, December 2018

RCCI Engine simulations: Low load

RCCI Engine simulations: Low load 1.4e6

30

RCCI Engine simulations: Medium load

RCCI Engine simulations: High load

RCCI Engine simulations: results summary

TCRCI Engine simulations

	low	load	mediu	m load	high	load
test	19082	7_p28	19091	.3_p11	19072	3_p12
GIMEP	4.4	bar	6.86	bar	13	bar
RPM	2000	1/min	2000	1/min	3000	1/min
m_inj_tot	13.5	mg	19	mg	35	mg
PFI	29.6	%	76.3	%	85.7	%
PFI_qty (gasoline)	4.00	mg	14.50	mg	30.00	mg
DI_qty (gasoline)	9.50	mg	4.50	mg	5.0	mg
split	0	%	0	%	0	%
DI_split1	0	mg	0	mg	0	mg
DI_split2	9.50	mg	4.50	mg	5.0	mg
SOI1	-	°CA bTDCF	-	°CA bTDCF	-	°CA bTDCF
SOI2	30	°CA bTDCF	32	°CA bTDCF	40	°CA bTDCF
Inj_time1	-	μs	-	μs	-	μs
Inj_time2	-	μs	-	μs	-	μs
T_fuelDI	390	°C	365	°C	360	°C
p_injDl	300	bar	300	bar	300	bar
EGR_ext	0	%	0	%	22	%
EGR_tot (ext+res)	7	%	6.7	%	25.4	%
O2 mass fraction	0.2293		0.2263		0.203	
N2 mass fraction	0.7674		0.7693		0.7668	
CO2 mass fraction	0.0024		0.0032		0.0219	
H2O mass fraction	0.0009		0.0012		0.0083	
p_IVC (-153°CA)	230000	Ра	240000	Ра	320000	Ра
T_IVC (-153°CA)	378	К	380	К	370	К
lambda	5.1		4.15		1.9	
lambda	4.7		3.5		2.1	
lambda_premix	17.230		5.439		2.217	
phi_premix	0.0580		0.1839		0.4511	

Cotellessa P., "Prototipazione e calibrazione sperimentale di un motore TCRCI", Master thesis in Mechanical Engineering, University of Modena and Reggio Emilia, March 2019

MARMOTOR

	DI Inject	or ge	ometry		_			
	Inj_n_hc	oles	6					
	Spray an	gle	120	0				
	D_hole	DI In	<mark>ijector geo</mark> i	netry				
		Inj_i	n_holes	6				
		Spra	y angle	120	0			
		D_h	ole	0.219	mm			
		_	ow <u>mediun</u>	high				
			/1					
	 			+++-				
				- $($				
							T	

L. Marmorini

TCRCI Engine simulations: Low load

MARMOTO

TCRCI Engine simulations: Low load

CA: -28 deg

Mixture fraction Z

0.000 0.016 0.032 0.048 0.064 0.080

Temperature [K]

800 1040 1280 1520 1760 2000

TCRCI Engine simulations: Medium load

MARMOTO

TCRCI Engine simulations: High load

TCRCI results summary

GROUP

- Use of a single gasoline-like fuel without any specific additive.
- Injection pressure levels comparable to current GDI technology (200-300 bar).
- Possibility to reach maximum engine load similar to RCCI and higher than HCCI (up to 15 bar IMEP).
- Potential to reach an IMEP of 20-25 bar with a better control of EGR.
- Better control with respect to HCCI (similar to RCCI).
- Possibility to use fuel with RON 98 without problem. In general it should be possible to use E-fuel and fuel with RON higher than 70 (tbc).
- Possibility to reach Indicated Efficiency close to 50% based on an existing diesel design.
- Possibility to reach Indicated Efficiency close to 55% with a bespoke design.
- Emission levels in terms of PM and NOx below Euro 6 standard without exhaust after treatment.
- HC and CO emission are high, but it needs to be tested a different piston bowl geometry

TCRCI results summary

- Mapping area with a Gross Indicated
 Efficiency close to 50 %
- Target map area for TCRCI (not reached yet)

Summary

Problem on correlation of lambda value to volumetric efficiency and exact amount of fuel.

• High load and high EGR critical for stability

Numerical simulation not accurate enough yet

• 1D model to be improved to correctly simulate residuals and scavenging during valve overlap.

Problem on keeping fuel injection temperature at a given value

- Redesign of injection system (adding thermal barrier inside and on the connections)
- Definition of a recirculation system before the injector to stabilise the inlet temperature.

Improvement on testing devices

- Possible introduction of a EGR pump (high pressure EGR not stable enough)
- Air flow meter
- Fuel flow meter in high pressure-high temperature line
- Experimental determination of Tfuel based on T at the inlet of injector

Thank you for the attention

