

Rapid Compression Machine Assessment of Anti-knocking Properties of Oxygenated Aromatic Hydrocarbons from the Fast Pyrolysis of Biomass: Experimental, Theoretical and Kinetic Modelling Study

> Matteo Pelucchi, Luna Pratali Maffei, René Daniel Buttgen, Marco Mehl, Alessio Frassoldati, Alexander Heufer, Carlo Cavallotti, Tiziano Faravelli

Chemical Reaction Engineering and Chemical Kinetics Lab

Fuels from Biomass Fast Pyrolysis

Bertero, M. (2012). Fuel, 95, 263-271.

Buttgen, R.D. et al. (2020). Submitted to Proceedings of the Combustion Institute

6

8

7

Additional Motivations: PAHs Growth and Oxidation Kinetics

Growth

Oxidation

4

Kinetic Model Development: Recent Efforts @ CRECK-POLIMI

Goals:

- Characterize the reactivity of OAHs by investigating the **influence of single and multiple substitutions** (-OCH₃, OH, CH₃, -CH₂OH, -CHO, ...)
- **Define Reaction Classes** applicable to MAHs (benzene, toluene, ...), OAHs (phenol, anisole, guaiacol, methyl-anisole, methyl-phenol, ...) and PAHs *same approach as for linear/branched fuels*
- Compute rate constants of the above reactions classes with high accuracy *ab initio* methods
- Derive Rate Rules from the above calculations
- Test and validate a detailed kinetic model for OAHCs anticknocking additives (Guaiacol and Phenetol)

Recent efforts:

+ 3 Symposium Submissions (POLIMI/RWTH)

- 1 Experimental study in RCM
- 2 Theoretical studies

Proximity Effects on BDE in Oxygenated Mono-Aromatic Hydrocarbons

Ortho–OH substitution strongly reduces $O - CH_3 BDE$

Rapid Compression Machine Experiments @ PCFC-RWTH

p=10-80 bar, IDT=5-300 ms, T=650-1100 K

Fuel	p_c	Fuel	O ₂	Ar	N_2
	bar	mol%			
Phenetol (PHT)	10, 20	2.1	20.6	31.0	46.3
4-Methylanisole (MA)	10, 20	2.0	20.6	31.0	46.4
Guaiacol (GA)	10	2.6	20.5	53.9	23.0
	20	2.6	20.5	3.9	73.0
Benzyl alcohol (BA)	10, 20	2.4	20.5	3.9	73.2

- ✓ 8 datasets for **pure additives** in «air», ϕ =1.0
- 4 datasets for *n*-pentane/additive mixtures (80/20 mol%) in «air» (RON_{n-C5}=62, RON_{mix}=72-83), φ=1.0, p=10 bar

Rapid Compression Machine Experiments @ PCFC-RWTH

 $p=10 \text{ bar, } \phi=1.0$

POLITECNICO MILANO 1863

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

Rapid Compression Machine Experiments @ PCFC-RWTH

POLITECNICO MILANO 1863

9

Kinetic model development: Reaction Classes (example: toluene)

Initiation reactions

H-abstraction reactions

Pratali Maffei et al. Submitted to *Proc. Comb. Inst.* (2020)

(Ipso-)Addition reactions

Pratali Maffei et al. Submitted to *Proc. Comb. Inst.* (2020)

Radical addition and **decomposition** to smaller molecules (or smaller rings) *via* **ring opening**

Molecular reactions

Pelucchi et al. Phys. Chem. Chem. Phys (2018), 20.16

Pelucchi et al. Reac. Chem. Eng. (2019), 4.3

Pratali Maffei et al. Reac. Chem. Eng. (2020), in press

POLITECNICO MILANO 1863

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology **10**

Kinetic model development: Reaction Classes (example: toluene)

POLITECNICO MILANO 1863

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology **11**

Kinetic model development: Reaction Classes (example: toluene)

Radical oxidation reactions

Radical addition to O₂

Radical addition and elimination (can be well skipping, and give "branching")

Peroxy radical isomerization to phenylhydroperoxy or benzylhydroperoxy radicals

Hydroperoxy radical decomposition to quinone species

Ring opening, extra addition to O₂, cyclization reactions, da Silva et al., J. Phys. Chem. A, (2007)

Pelucchi et al. Phys. Chem. Chem. Phys (2018), 20.16

1) "Rate constants for the H-abstraction reactions from mono-aromatic hydrocarbons by \dot{H} , $\dot{C}H_3$, $\dot{O}H$ and 3O_2 : a systematic theoretical investigation."

Luna Pratali Maffei, *Matteo Pelucchi, Rene Daniel Büttgen, Karl Alexander Heufer, Tiziano Faravelli, Carlo Cavallotti

2) "Rate constants for the \dot{H} ipso-addition reactions on mono-aromatic hydrocarbons with single and double OH/CH₃ substitutions: a systematic theoretical investigation."

Luna Pratali Maffei,^{*}Matteo Pelucchi, Tiziano Faravelli, Carlo Cavallotti

Rate constant calculation according to EStokTP protocol¹

- Allows to automatically compute rate constants with a factor of ~2 accuracy (±0.7 kcal/mol, «chemical accuracy»)
- Optimized routines developed and tested for different Reaction Classes
- Different parallel jobs allow to:
 - Investigate chemistry by Reaction Classes (i.e. changing reactants)
 - Assess the accuracy of the methods for a given Reaction Class (by comparison with experimental ks)
 - Derive fundamentally based Rate Rules, by analogy

Cavallotti et al., J. Chem. Theory Comput., 15.2 (2018): 1122-1145.

S

Global minimum

POLITECNICO MILANO 1863

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

15

Pratali Maffei et al., Submitted to Proc. Comb. Inst. (2020), 1

POLITECNICO MILANO 1863

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

17

CRECK Model Update

POLITECNICO MILANO 1863

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

Model Validation, criticisms of interconnected pathways

1) Pelucchi et al., Reac. Chem. Eng. 4.3 (2019) | 2) Wagnon et al., Combust. Flame 189 (2018) | 3) Nowakowska et al., Combust. Flame 161.6 (2014)

POLITECNICO MILANO 1863 13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

Model Validation, criticisms of interconnected pathways

1) Pelucchi et al., Reac. Chem. Eng. 4.3 (2019) | 2) Wagnon et al., Combust. Flame 189 (2018) | 3) Nowakowska et al., Combust. Flame 161.6 (2014)

Model Validation: Toluene, Phenol and Anisole

- IDT targets include Shock Tubes and RCM (p=10-40 bar, T=800-1400 K)
- Other targets include speciation measurements in ideal reactors, and flame speeds

→Solid basis to develop a model for Guaiacol and Phenetol

Kinetic Model Development: Analogy

Kinetic Model Development: Guaiacol from Anisole and Phenol!

1) $GUAIACOL = RCATEC + CH3$	Unimolecular Initiation	
2) $GUAIACOL + H = RGUAIACOL + H2$		Fuel
3) $GUAIACOL + OH = RGUAIACOL + H2O$		
4) GUAIACOL + CH3 = RGUAIACOL + CH4		
5) $GUAIACOL + O2 = RGUAIACOL + HO2 (dup)$		R● ▲
6) $GUAIACOL + H = RGUAIACOLC + H2$	H-abstraction reactions	+ O2 🚺 + O2
7) $GUAIACOL + OH = RGUAIACOLC + H2O$		ROO •
8) GUAIACOL + CH3 = RGUAIACOLC + CH4		1
9) GUAIACOL + O2 = RGUAIACOLC + HO2		•000H
10) H + GUAIACOL = CATECHOL + CH3		
11)H + GUAIACOL = OH + CRESOL		+ O2
12)H + GUAIACOL = OH + C6H5OCH3	Inso-additions	•00Q00H
13) H + GUAIACOL=C6H5OH + CH3O	1ps0-additions	
14) OH + GUAIACOL=CATECHOL + CH3O		
15) CH3 + GUAIACOL = CRESOL + CH3O		00001+010
16) $GUAIACOL => CO + CH2CO + C4H6$		-
17) RGUAIACOL => RGUAIACOLC	Radical decomposition and isomerizations	,c0.0.
18) RGUAIACOLC => CH2O + C6H4OH		0 ц
19) RGUAIACOL => $CO + CH2O + C5H5$		
20) RGUAIACOLC + O2 = RGUAIACOLC-OO		
21) RGUAIACOLC-OO = RGUAIACOLC-QOOH	Radical oxidation reactions (LI-like)	
22) RGUAIACOLC-QOOH => C4H4 + CH2O + 2CO + OH		

Model Validation: Guaiacol and Phenetol

Mixtures, Φ =1.0, p=10 bar

Conclusions and future work

- U Why mono-aromatic and oxygenated mono-aromatic hydrocarbons combustion chemistry?
 - Promising anti-knocking additives (impact on PAH/SOOT to be investigated) from biomass conversion
 - □ Reference fuels (e.g. toluene, xylene...)
 - □ Key building blocks in PAHs and Soot Growth/Oxidation
 - □ Systematic definition of Reaction Classes and Rate Rules is missing from the literature
- Ignition Delay Time Measurements in Rapid Compression Machine (and Shock Tube) confirm the anti-knock potential of oxygenated aromatics and serve as a first target for kinetic models
- □ A first working model developed by better defining Reaction Classes and Rate Rules from theory and by analogy from an ongoing thorough revision of MAH/PAHs kinetics
- □ Systematic theoretical calculations are useful to define accurate rate rules,

in particular when only limited experimental targets exist (IDT, LFS, ..., ks), and no comprehensive theoretical investigations exist

- □ A fully theory-based approach to fuel design is achievable, but some limitations still exist
 - □ Model has to be working anyway (very interconnected pathways might be an issue)
 - It is a critical iterative process (develop => implement new parameters => re-validate and fix!), but it is starting to be faster (and automated)

The authors from **Politecnico di Milano** gratefully acknowledge the financial support for this research provided by the **European Union** under the **Horizon 2020** research and innovation programme (**Residue2Heat** project, G.A. No 654650).

Master students: Ing. Stefano Caruso and Ing. Gianmarco Cislaghi

The authors from PCFC RWTH Aachen University gratefully acknowledge the German Research Foundation (DFG) for financial support for this research provided (HE 7599/1-1).

Contacts: matteo.pelucchi@polimi.it, creckmodeling.chem.polimi.it

POLITECNICO MILANO 1863 13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology 28

The CRECK Modeling Lab

