Computational modeling of Diesel spray combustion with multiple injections

Q. Zhou, T. Lucchini, G. D'Errico

Department of Energy, Politecnico di Milano

G. Hardy
FPT Motorenforschung AG
N. Maes, B. Somers
Eindhoven University Of Technology
X. Lu

Shanghai Jiao Tong University

1. Motivation

2. Combustion Models

- Representative Interactive Flamelet (RIF)
- Tabulated Flamelet Progress Variable (TFPV)

3. Assessment & Investigation

- Heavy-duty Diesel Engine Combustion Modeling
- Evaluation of Turbulence Models in Diesel Spray Modeling
- Diesel Spray Combustion with Multiple Injections

1. Motivation

2. Combustion Models

- Representative Interactive Flamelet (RIF)
- Tabulated Flamelet Progress Variable (TFPV)

3. Assessment & Investigation

- Heavy-duty Diesel Engine Combustion Modeling
- Evaluation of Turbulence Models in Diesel Spray Modeling
- Diesel Spray Combustion with Multiple Injections

Motivation

The secret of engine...

Source: Irannejad A, Banaeizadeh A, Jaberi F., Combust. Flame, 2015, 162(2): 431-450. Source: Dorian Parker, University of Hawaii

Motivation

High computational burden...

Solution: Tabulated Kinetics

For Diesel combustion, the TFPV, assuming unsteady diffusion flame, will be presented

Source: Lu and Law, Prog. Energ. Combust. (2009), C K. Law, P COMBUST INST. (2007).

1. Motivation

2. Combustion Models

- Representative Interactive Flamelet (RIF)
- Tabulated Flamelet Progress Variable (TFPV)

3. Assessment & Investigation

- Heavy-duty Diesel Engine Combustion Modeling
- Evaluation of Turbulence Models in Diesel Spray Modeling
- Diesel Spray Combustion with Multiple Injections

RIF

Laminar flamelet concept describes diffusion flame

380 530

Z=0

Temperature [K]

1590

2120

2500

1060

<u>Z=</u>1

RIF

- 1: transport equation in CFD domain
- 2: flamelet equation and pdf integration
- 3: update composition in CFD domain

 Composition in (Z,Z^{"2}) maps is mapped back to the CFD domain

HR Table

Homogenous chemistry table:

Progress Variable definition:

reconstruction of the thermo-chemical state on the whole reaction trajectory

$$C = \sum_{i=1}^{Ns} h_{298,i} \cdot (Y_i(t) - Y_i(0))$$

- C is equal to the heat released by combustion
 - C=0: unburned mixture
 - C=1: fully burned mixture
- Track both low and high temperature reactions
- uniquely characterizes each point in the thermochemical state space and is appropriate for a transport equation.

Definition adopted from: Lehtiniemi et al., Combust Sci Technol 178, 2006

TRIF

Tabulated RIF

Chemistry table (0 D homogeneous reactor calculations)

TFPV

Lookup table **CFD** solver (unsteady diffusion flame calculations) **Mixture fraction** $\frac{\partial \overline{\rho} \widetilde{Z}}{\partial t} + \nabla (\overline{\rho} \widetilde{U} \widetilde{Z}) - \nabla (\widetilde{\mu}_t \nabla \widetilde{Z}) = \dot{S}_Z$ TFPV Table **Mixture fraction variance** Table $\frac{\partial \overline{\rho} \widetilde{Z}^{\prime \prime 2}}{\partial t} + \nabla (\overline{\rho} \widetilde{U} \widetilde{Z}^{\prime \prime 2}) - \nabla (\widetilde{\mu_t} \nabla \widetilde{Z}^{\prime \prime 2}) = 2 \frac{\widetilde{\mu_t}}{Sc} |\nabla \widetilde{Z}|^2 - \overline{\rho} \widetilde{\chi} \frac{\widetilde{Z}, \widetilde{Z}^{\prime \prime 2}, \chi_{st}}{c, p, Tu}$ $\dot{c}(c), Y_{i,v}(c), Y_{i,o}(c)$ c(z), T(z), p $\dot{c}(z)$ Stoichiometric scalar dissipation rate $\chi_{st} = \frac{\pi}{\int_0^1 \frac{f(Z)}{f(Z_{-1})} \tilde{P}(Z) dZ}$ С $Y_i \& \dot{c}$ T_u **Progress variable** TRIF EGR $c(t, Z, \widetilde{Z^{\prime\prime 2}})$ $\frac{\partial \overline{\rho} \tilde{C}}{\partial t} + \nabla (\overline{\rho} \tilde{U} \tilde{C}) - \nabla \left(\frac{\widetilde{\mu_t}}{Sc_t} \nabla \tilde{C}\right) = \bar{\rho} \dot{C}$ $Y_{i,o}\left(t,Z,\widetilde{Z^{\prime\prime2}}\right)$ χ_{st} $Y_{i,o}(t, Z, \widetilde{Z^{\prime\prime 2}})$ Unburned gas enthalpy $\frac{\partial \overline{\rho} \widetilde{h_u}}{\partial t} + \nabla (\overline{\rho} \widetilde{U} \widetilde{h_u}) - \nabla (\widetilde{\alpha_t} \nabla \widetilde{h_u}) = \dot{Q}_s + \frac{\overline{\rho}}{\overline{\rho_u}} \cdot \frac{D\overline{p}}{Dt}$ $Z, \widetilde{Z''^2}$ GEGR

Expectations

Compared to RIF using a single flamelet formulation, TFPV model is to provide a realistic description of the turbulent diffusion flame, especially in the presence of multiple injections:

- Extinction in the near-nozzle region where the scalar dissipation rate is very high;
- Re-ignition due to progress variable convection and diffusion;
- Flame stabilization process including effects of both premixed and diffusive flame propagation.

1. Motivation

2. Combustion Models

- Representative Interactive Flamelet (RIF)
- Tabulated Flamelet Progress Variable (TFPV)

3. Assessment & Investigation

- Heavy-duty Diesel Engine Combustion Modeling
- Evaluation of Turbulence Models in Diesel Spray Modeling
- Diesel Spray Combustion with Multiple Injections

Heavy-Duty Engine: case setup

Engine Specifications:

Bore	128 mm
Stroke	144 mm
Compression ratio	20.5:1
Injector holes	8
Injection cone angle	146°
#injection	1

Chemistry table discretization:

Temperature [K]	400, 450, 500, 550, 600, 650, 700, 750, 800, 850, 900, 950, 1000, 1050, 1100, 1150, 1250
Pressure [bar]	20, 60, 100, 150, 200, 250
Equivalence ratio [-]	0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.5, 1e15
Mixture fraction variance segregation [-]	0, 0.001, 0.005, 0.01, 0.05, 0.1, 1.0
Scalar dissipation rate [1/s]	0, 1, 3, 7, 20, 55, 100
Three chemistry tables were gene chemical compositions at IVC.	erated, each one for operating points with similar oxidizer

GKU

POLITECNICO DI MILANO

Heavy-Duty Engine: summary

Simulated operating conditions:

injection

1. Motivation

2. Combustion Models

- Representative Interactive Flamelet (RIF)
- Tabulated Flamelet Progress Variable (TFPV)

3. Assessment & Investigation

- Heavy-duty Diesel Engine Combustion Modeling
- Evaluation of Turbulence Models in Diesel Spray Modeling
- Diesel Spray Combustion with Multiple Injections

Spray A case setup

Near nozzle Injection Injection Rear nozzle	08 mm cube $\alpha - \omega$ SST: 1.0 M cells, much efined near nozzle $\alpha - \varepsilon$: 0.4 M cells	 <i>k</i> – <i>ω</i> SST case hollow cone injector Reitz-Diwakar breakup standard <i>k</i> – <i>ω</i> SST with modified <i>γ</i>₂ Frassodati, 130 species & 2323 reactions 	 k – ε case hollow cone injector Reitz-Diwakar breakup standard k-ε with modified C₁ Frassodati, 130 species & 2323 reactions 	
Chemistry table discretization				
Temperature [K]	400, 450, 5 1150, 1250	500, 550 600, 650, 700, 750, 800, , 1350	850, 900, 1000, 1050,	
Pressure [bar]	45, 55, 65	45, 55, 65		
Equivalence ratio	0, 0.2, 0.4, 1.2, 1.25, 1 3.5, 1e15	0, 0.2, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15, 1.2, 1.25, 1.3, 1.35, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.2, 2.4, 2.6, 2.8, 3, 3.5, 1e15		
Mixture fraction segrega	ation 0, 0.001, 0.	.005, 0.01, 0.05, 0.1, 1		
Scalar dissipation rate [1/s] 0, 1, 3, 7, 2	20, 55, 100		

POLITECNICO DI MILANO

Non-reacting: liquid and vapor penetration

Non-reacting: velocity and mixture fraction

19

Reacting: I - x - t plot

I - x - t (intensity - axial distance - time) is calculated by integrating OH* chemiluminescence data from experiments or OH mass fraction from CFD along the symmetry axis

Features are shown in such plot:

- 1. Ignition delay
- 2. Lift-off length
- 3. High temperature combustion recession
- 4. Flame tip and foot

Reacting (TFPV): $k - \varepsilon$ vs. $k - \omega$ SST

1. $k - \omega SST$ predicts longer lift-off due to richer mixture and higher velocity near injector

2. Similar description in terms of flame tip, while $k - \omega SST$ better captures the burn-out

21

1. Motivation

2. Combustion Models

- Representative Interactive Flamelet (RIF)
- Tabulated Flamelet Progress Variable (TFPV)

3. Assessment & Investigation

- Heavy-duty Diesel Engine Combustion Modeling
- Evaluation of Turbulence Models in Diesel Spray Modeling
- Diesel Spray Combustion with Multiple Injections

Spray A: high-temperature reactions

- 1. The progress variable approach gives better description of ignition and combustion of the second injection event;
- 2. TFPV could correctly predict the lift-off and combustion recession

Spray A: low-temperature reactions

Capability of capturing the cool flame characteristics and tracking lowtemperature products formaldehyde

- 0.69 and 1.69 ms: The lowtemperature combustion recession was observed in TFPV case
- 2. 1.09 ms: TFPV predicts more distinct CH2O in the near nozzle region

Light-Duty Engine: case setup

Engine Specifications:		
Bore	96 mm	
Stroke	105 mm	
Compression ratio	18:1	
Injector holes	8	
Injection cone angle	130°	

Simulated operating conditions:

	Hi-EGR	A25	1400X9
Speed [rpm]	1400	2000	1400
Load [%]	25	25	50
#injections	3	3	3
EGR [%]	40	22	14
λ	2.3	1.85	1.2

3 low load operation conditions, where pilot injections are present, were chosen.

Light-Duty Engine: Hi-EGR

TFPV achieves better agreement with experiments in terms of pressure & AHRR Similar to Spray A case, the progress variable approach predicts smoother AHRR

Light-Duty Engine: A25 & 1400X9

For A25 case, TFPV could predict the pressure and AHRR very well, while further investigation should be conducted for 1400X9 case.

1. Motivation

2. Combustion Models

- Representative Interactive Flamelet (RIF)
- Tabulated Flamelet Progress Variable (TFPV)

3. Assessment & Investigation

- Heavy-duty Diesel Engine Combustion Modeling
- Evaluation of Turbulence Models in Diesel Spray Modeling
- Diesel Spray Combustion with Multiple Injections

Conclusion

TFPV vs. RIF:

- 1. Both models could provide encouraging results in heavy-duty engine application, when only one main injection is used.
- 2. The advantages of TFPV become more evident in the presence of multiple injections:
 - Ignition delay and AHRR of the second injection event (Spray A)
 - Lift-off, low- and high-temperature combustion recession (Spray A)
 - Pressure and AHRR (LD engine)

$k - \omega SST$ vs. $k - \varepsilon$ model:

1. The $k - \omega$ SST could give a comparable prediction with respect to $k - \varepsilon$ in both non-reacting (liquid and spray penetration, mixture fraction and velocity distribution) and reacting case.

Next step:

- 1. Comprehensive validation of TFPV in LD engine with multiple injections
- 2. Use of $k \omega SST$ in practical engine applications

Thanks for your attention!!!

