CFD modeling of IC engines: Research work at Politecnico di Milano

Internal Combustion Engine Group Department of Energy, Politecnico di Milano

The Internal Combustion Engine Group

Staff

Angelo Onorati, Full Professor Gianluca D'Errico, Full Professor Gianluca Montenegro, Associate Professor Tommaso Lucchini, Associate Professor Augusto Della Torre, Assistant professor Tarcisio Cerri, Assistant professor

Post-doc/MSc researchers

Lorenzo Sforza, post-doc researcher Giorgio D'Antonio, MSc researcher Filippo Pavirani, MSc researcher Andrea Marinoni, MSc researcher

PhD students

Davide Paredi Giovanni Gianetti Matteo Tamborski Antonello Nappi Qiyan Zhou

MSc thesis 20-25 per year Visiting PhD Aalto, Sidney, KTH, Chalmers, Freiberg, Valencia, etc.,

CFD for IC Engines: why OpenFOAM?

Requirements

Implementation of new models

- Research on fundamental topics
- Extensive validation using different type of data (engine, vessels)

Fully integrated methodologies

Massive application in research and industrial projects

OpenFOAM is the solution

- Free and opensource
- Many pre-implemented capabilities: meshing, numerics, models
- Different available versions but very compatible
- Perfect basis to develop own libraries and solvers for complex problems

In-cylinder flows

In-cylinder simulations workflow

Spark-ignition engines: mesh generation and handling

Input data

Input engine geometry data:

- STL geometry
- stroke, bore, connecting rod length
- valve lift curves
- rounds per minute

Spark-ignition engines: mesh generation and handling

Mesh motion and full-cycle simulation

POLITECNICO MILANO 1863

Time: 374.000000

Spark-ignition engines: EU project HDGas

- Purpose: development of dedicated SI, natural gas engines for heavy duty
- OpenFOAM and LibICE used for design of combustion chamber and analysis of fuel-air mixing

Spark-ignition engines: EU project HDGas

Spark-ignition engines: EU project UPGRADE

- Purpose: development of a new generation of GDI Engines with high efficiency and low-soot
- OpenFOAM and LibICE used to perform full-cycle simulations (gas exchange, fuel-air mixing and combustion) in both production and optical engines.

Spark-ignition engines: EU project UPGRADE

Simulation of the fuel-air mixing process with wall-film

Acknowledments: A. Gerini, S. Zandiri, F. Perna (CRF)

Spark-ignition engines: combustion modeling

Comprehensive approach for spark-ignition combustion – CHIBA VESSEL

Cold-flow initialization

POLITECNICO MILANO 1863

Acknowledments: T. Shiraishi, T. Hori(Nissan); prof. Moriyoshi (Chiba University)

Spark-ignition engines: combustion modeling

Diesel engines: mesh generation and handling

Diesel engines: spray modeling

Liquid+vapor penetration

POLITECNICO MILANO 1863

٠

Diesel engines: combustion modeling

RIF: Representative interactive flamelet model

- Flamelet equations solved in the mixture fraction space (regionModel)
- Direct-integration of chemistry in Z-space and integration of β-pdf to get the composition in any cell.

From HR tabulation to more complex flame structures and combustion models for different conditions:

- **TWM** : well mixed (no turbulence chemistry interaction)
- **TPPDF** : presumed pdf
- **TRIF** : RIF model with tabulated reaction rate (from HR)
- **TFPV** : flamelet progress variable model. Reaction rates based on diffusion flame calculations performed with the TRIF model.

Diesel engines: RIF model

FPT C11 engine

Heavy-duty engine for road transportation

- 14 operating points selected at different loads and speeds
- Spray model constants tuned using results from TUE vessel simulations

Spray-oriented grid

Acknowledgments: G. Hardy (FPT)

Diesel engines: RIF model

FPT C11 engine

Heavy-duty engine for road transportation: engine performance prediction (pressure and work)

Diesel engines: RIF model

FPT C11 engine

Heavy-duty engine for road transportation: pollutants prediction (NO_x and CO)

Diesel engines: tabulated kinetics

FPT F1C engine

Light-duty engine for road transportation

Compr	าลแบ	10	
IVC		-145 deg	Nozz hole di
EVO		110 deg	Hom

Table discretization

Temperature [K]	600 – 1300
Pressure [bar]	30 - 200
Equivalence ratio	0 – 3
Mixture fraction segregation	0.0 - 1.0
Scalar dissipation rate χ_{st} [1/s]	0 – 55

POLITECNICO MILANO 1863

• **TPPDF, TRIF, TFPV** ⇒ TCI included

Diesel engines: tabulated kinetics

Similar heat release rate during main combustion

• Ignition delay:

⇒ TFPV ignites earlier than TRIF and TPPF during second and main injection events.

Diesel engines: tabulated kinetics

- All the models are able to capture in-cylinder pressure peak and NOx
- CPU time: 15 hours on a 8 core machine for a power-cycle (dual-core, eight processor Intel Xeon E5- 2630 v3 2.40GHz)

Diesel engines: alternative combustion modes

Diesel engines: soot prediction

Experimental

x [mm]

x [mm]

Computed

Leung-Lindsted and Jones model

Two equation approach solving for f_v and N_p using C_2H_2 as precursor

Soot distribution

(a): **O3**

-4

-4

[uu] (> -2

[mm] (> -2

x [mm]

After-treatment

After treatment

Overview of the physical scales of the problem & CFD modelling approaches

After treatment: computational model

DOC modelling: preliminary validation case

Full-scale 3D case including DOC monolith and electrical heating

Non-uniform heating P_{el} = 1 kW : 0-100 s P_{el} = 0.5-0.2 kW : 100-300 s Non-uniformity of the heating generates hot spots → earlier light-off

Non-heated DOC configuration Time = 140 s

After treatment: SCR mixer optimization

Optimization of the mixer geometry

- <u>Variables</u>: angles α , β , γ of the mixer blades
- <u>Function objects</u>: Δp_{mix} , $UI(NH_3)_{SCR,inl} \ge 2$ MF (low and high)

After treatment: optimization procedure

After treatment: SCR mixer optimization

Conclusions on LibICE activities

OpenFOAM for IC Engine simulations

Ideal platform to develop advanced models to simulated complex problems in real geometries including:

- Turbulent and multiphase flows
- Chemical reactions
- Moving boundaries

OpenFOAM + LibICE: consolidated tool for engine design, optimization and analysis:

- In-cylinder flows
- Combustion and pollutant emissions
- After-treatment devices

Next directions

- Advanced combustion modes (RCCI, PCCI, dual fuel)
- Flash boiling and new wall film model (Lagrangian)
- Models for sophisticated after-treatment devices operating under RDE conditions.

Developed at PoliMi during the last 20 years, now codeveloped with Exothermia. GASDYN is also coupled to the AXISUITE simulation code, for the simulation of the complete after-treatment system.

• Strong partnership between PoliMi, Exothermia and Aristotle University on this research topic, for further developments and applications of GASDYN.

L4 turbo-charged, natural gas SI engine with complete intake and exhaust systems.

V10 NA SI high-speed engine with Variable Intake System (VIS)

Conservation equations for mass, momentum and energy in 1D:

Model application: Ferrari-Maserati V8 Engine

Swept volume: 4244 cm³ Max. Power: 287 kW @ 7000 rpm Max. Torque: 451 Nm @ 4500 rpm

 12 Cylinders, V60, 6.2 liters, Variable Intake System, intake and exhaust VVT, 650 Nm@5400 rpm, 426 kW@7500 rpm

 10 species (or more) can be transported along the duct system with eventual reactions (unsteady reacting flows)

Gasdyn MDW3Z Model Multiple Double-Wiebe 3-Zone Combustion Model

- Combustion model developed by ICEgroup ٠
 - Designed to handle modern multi-pulse injection

Combustion rate imposed by means of multiple

• Mixture composition (fresh charge, fuel, EGR)

Each discrete injection event is defined as a pulse

double-Wiebe law taking account the in-cylinder

- Fuel (vaporized)
- Exhaust gas

• Pressure and temperature

• Up to 4 number of pulses

-15

0

15

Crank angle [deg]

30

45

60

conditions

Injection

flow rate Mass

-30

 Injection timings Fast run time

- Double Wiebe function
 - Each pulse burns with a rate defined by the following expression

Ignition Ignition delay calcul

lated as

$$\tau_{ign} = \frac{C_{ign}}{C_{ign2}} \rho^{C_{ign2}} \exp\left(\frac{C_{ign3}}{T}\right) f(\text{EGR})$$

- dt = 1

Ignition occurs when

• NOx

- Extended Zeldovich mechanism
- CO

o Equilibrium approach

- Soot
 - Semi-empirical Hiroyasu model predicts the soot formation rate
 - Semi-empirical Nagle Strickland predicts the oxidation soot step
- Combustion model ٠
 - o HRR calculated separately for each pulse
 - o Different Wiebe coefficients for each pulse
 - Wiebe coefficients parametrized as a function of in-cylinder residuals

•

Gasdyn MDW3Z Model Case Study: Four Cylinders, Turbo-Charged, DI Diesel Engine

EGR [%] 50.0 Operating point #3 40.0 o 25% load, 2000 rpm, three injections: 2 pil. + main 30.0 HRR [J/deg] vs. crank angle [°] Cylinder pressure [bar] vs. crank angle [deg] 20.0 90.0 80.0 10.0 Ū. 80.0 measured ····· measured 0.0 70.0 computed — computed 60.0 0 2 3 4 5 6 7 60.0 -+ • measured --e-- computed 50.0 40.0 40.0 NOx/NOx max [-] 1.4 30.0 1.2 20.0 20.0 1 10.0 0.8 0.0 0.0 0.6 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0 -180.0 -120.0 -60.0 0.0 60.0 120.0 180.0 0.4 0.2 0 4 5 6 7 8 9 10 0 2 3 -+- measured --- computed • Operating point #9 Pulses [-] soot/soot_max [-] 5 1.4 100% load, 3500 rpm, only main injection 1.2 4 1 Cylinder pressure [bar] vs. crank angle [deg] HRR [J/deg] vs crank angle [deg] 3 0.8 120.0 160.0 0.6 ·····measured 140.0 —measured 0.4 100.0 computed -computed 0.2 120.0 80.0 0 100.0: 1 2 3 4 tot. pulses 5 6 7 ■ pilots 8 4 56 7 8 9 10 0 2 3 60.0 80.0 - +- measured --- computed 60.0 40.0 BMEP [MPa] CO [ppm] 2 1000 40.0 20.0 800 20.0 1.5 0.0 ~ ~ 0.0 600 -30.0 -15.0 0.0 15.0 30.0 45.0 60.0 75.0 90.0 -180.0 -120.0 -60.0 0.0 60.0 120.0 180.0 1 400 0.5 200 Operating points used to tune the combustion model 0 0 1 2 3 4 5 6 7 computed 8 9 0 1 2 3 4 5 6 7 8 9 10 measured - +- measured -- computed

Coupled 1D-3D simulations

Unsteady flows in intake and exhaust systems: 1D-3 coupling

Pressure wave validation, 1D-3D simulations

1500 rpm – 40 Nm, 3000 rpm – 220 Nm

1D-3D simulation of an Aprilia V4 engine

3Dcell approach

• A quasi-3D method (**3Dcell approach**) has been developed and validated as a compromise between the time-demanding 3D CFD analysis and the fast 1D approach, resorting to a 3D grid of 0D elements (coarse grid: 1-2 cm).

Unviscous gas: Euler equations

Outlet pipe

The 3D cell is defined by means of two fundamental elements:

- ▲ cell: contains information about the volume of the element and is connected to other cells by means of connectors
- connector: contains information about the cell connectivity, the distance from the center of the neighboring cells and has its own momentum

The model is based on a staggered grid approach

Explicit time marching method

3Dcell approach

90° T junction: simulation (coarse grid)

90° T junction: simulation (fine grid)

Simple expansion chamber: 1D model vs 3D cell prediction

1D-quasi3D integrated model

- Fully coupled simulation with 1D code (GASDYN)
- The same numerical method is applied to 1D pipes and 3D components

Air-box and silencer modeling

- Pressure pulses in three different locations
- Pulses in the intake runners are strongly influenced by the interference between the cylinders

