Technische Universiteit **Eindhoven** University of Technology

Multiphase and Reactive Flows Group

3rd Two-day Meeting on IC Engine Simulations Using OpenFOAM[®] Technology 22-23 Feb 2018 - Milano

Incorporation of Flamelet Generated Manifold Combustion Closure to OpenFOAM and Lib-ICE

Amin Maghbouli Bart Somers

Where innovation starts

TU

Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine
- Conclusions

Contents:

Introduction to Chemistry Reduction Methods

- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine

Conclusions

TU/e Technische Universiteit Eindhoven University of Technology

Introduction to Chemistry Reduction Methods

Chemical Kinetics of Reactive Flows

- Result in system of stiff ODE and solution for reaction rates requires specific mathematical algorithms.
- Hinders prospective CFD simulations of reactive flows.

Introduction to Chemistry Reduction Methods

Chemistry Tabulation

- No integration for Chemistry
- Look up routines for updating sources

on-the-fly Chemistry

- Direct integration for chemistry
- Sources update after chemistry integration

Progress Variable approach

VS

Flame Types:

- Perfectly Stirred Reactor
- Approximated Diffusion Flemelet
- Flamelet Generated Manifolds

Developed at TU/e

Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine

Conclusions

Flamelet Generated Manifolds

CHEM1D: 1D flamelet solver code:

- Adaptive gridding
- Implicit solver
- Timestepper (real /false)
- Flexible inlet composition
- > CHEMKIN III compatible
- Thermal diffusion
- Transport modelling
- Unity Lewis numbers
- Constant Lewis numbers
- Different Flame Types
- > Mixture average

www.fgm-combustion.org

The Simulation of Flat Flames with Detailed and Reduced Chemical Models, Bart Somers

Tabulation of counter flow flamelets for Reacting Sprays

Reaction Space – flamelet solver

• CHEM1D solver code was used for flamelet generation.

$$\begin{split} \frac{\partial \rho}{\partial t} &+ \frac{\partial \rho u}{\rho x} = -\rho K\\ \frac{\partial \rho Y_n}{\partial t} &+ \frac{\partial \rho u Y_n}{\rho x} = \frac{\partial}{\partial x} \left(\rho D \frac{\partial Y_n}{\partial x} \right) + \dot{\omega}_n - \rho K Y_n\\ \frac{\partial \rho h}{\partial t} &+ \frac{\partial \rho u h}{\rho x} = \frac{\partial}{\partial x} \left(\frac{\lambda}{c_p} \frac{\partial h}{\partial x} \right) - \rho K h \end{split}$$

• CHEM1D:

Includes different Flame Types:

FREE, BURNERSTABILIZED, COUNTERFLOW, BIO, and ...

Transport: UNITY LEWIS, CONSTANT/VARIABLE LEWIS

- Flamelet CFD solver for reacting spray and IC engine
- Source code for table dimensions and data handling
- Dimensions for tabulation of chemistry can be:

4D Tables for IC Engines

3rd Two-day Meeting on IC Engine Simulations Using OpenFOAM Technology 22-23 Feb 2018 - Milano

Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine

Conclusions

Case Study: Constant Volume Vessel | ECN Spray A

Experimental configuration

ECN

210073		Specifications for Spray	Specifications for Spray A of the ECN	
		Fuel injector	Bosch	
		Orifice diameter	0.090 mm	
	Ib.	Nozzle K factor	K = 1.5	
Sandia	TU/e	Nozzle shaping	Smoothed	
		Mini-sac volume	0.2 mm ³	
		Discharge coefficient	C _d = 0.86	
		Number of holes	single hole	
	Dye-laser	Orifice orientation	Axial	
	532 nm	84 nm		
arge set of experir	nental and Non-re	acting: Liquid/vapor per	ı. and	

CAPELINEINAL numerical data for non-reacting and reacting operating conditions

Mixture Fraction distribution

Reacting: Ignition delay and Flame Lift-off

Technische Universiteit ΤU Eindhoven University of Technology

Case Study: Constant Volume Vessel | ECN Spray A

Non-reacting: Liquid/vapor penetration and Mixture Fraction distribution

(RANS)

0.056

Simulation

Experiment

Case Study: Constant Volume Vessel | ECN Spray A n-dodecane Chemistry:

Mechanism of Yao et al. was used.

Yao et al. 9th U. S. National

Combustion

Case Study: Constant Volume Vessel | ECN Spray A

FGM: Table dimensions and progress variable definition

Spray A ambient composition

 $C = Y_{HO_2} + Y_{CH_2O} + Y_{H_2O} + Y_{CO_2} + Y_{CO}$

Case Study: Constant Volume Vessel | ECN Spray A Reacting: Ignition Delay, PRR, Flame Lift-off

Case Study: Constant Volume Vessel | ECN Spray A Reacting: Ignition Delay, PRR, Flame Lift-off at 3 CAD ATDC

3rd Two-day Meeting on IC Engine Simulations Using OpenFOAM Technology 22-23 Feb 2018 - Milano

Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine

Conclusions

TU/e Technische Universiteit Eindhoven University of Technology

Case Study: Light Duty Diesel Engine | ECN Spray B

Experimental configuration

Operating conditions:

Case name	900K	800K	1000K
Temperature at IVC [K]	380	340	454
Pressure at IVC [bar]	2.25	2.01	2.61
Temperature at TDC [K]	900	800	1000
Density at TDC $[kg/m^3]$		22.8	
Non-reacting O_2 [%]	7.5	-	-
Reacting O_2 [%]		15	
Injection pressure [bar]		1500	
Injected mass [mg/cycle]		3.68	
Engine Speed [rpm]		1200	
Inj. start [CAD ATDC]		-2.5	
Inj. duration [CAD]		11	

Non-reacting: Liquid/vapor penetration

Reacting: In-cylinder Pressure and AHRR

TU/e Technische Universiteit Eindhoven University of Technology

Case Study: Light Duty Diesel Engine | ECN Spray B

Reacting: Flame Lift-off

Reacting: Flame Lift-off

Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine

Conclusions

Case Study: Heavy Duty Diesel Engine |

Experimental configuration

Operating conditions

Case	HT-Sh-ID	HT-Lo-ID
Engine Speed [rpm]	1200	1200
Temperature at IVC [K]	384	320
Pressure at IVC [bar]	1.2	1.2
Temperature at TDC [K]	900	800
Density at TDC $[kg/m^3]$	24	22.3
Injected mass [mg/cycle]	61	61
Inj. start [CAD ATDC]	-7	-5
Inj. duration [CAD]	10	10
O ₂ concentration [% by Vol.]	21	21

Injected Mass	= 16.2 × Injected	Mass
	Heavy Duty	Spray

Case Study: Heavy Duty Diesel Engine | Sandia Engine

Non-reacting: Liquid penetration

Operating conditions

Case Study: Heavy Duty Diesel Engine | Sandia Engine Reacting: In-cylinder Pressure & AHRR

TUe Technische Universiteit Eindhoven University of Technology

Technische Universiteit Eindhoven University of Technology e

3rd Two-day Meeting on IC Engine Simulations Using OpenFOAM Technology 22-23 Feb 2018 - Milano

TU/e Technische Universiteit Eindhoven University of Technology

Technische Universiteit **Eindhoven** University of Technology e

Technische Universiteit **Eindhoven** University of Technology e

Contents:

- Introduction to Chemistry Reduction Methods
- FGM Implementation to OpenFOAM and Lib-ICE
- Case Study
 - Constant Volume Vessel | ECN Spray A
 - Light Duty Diesel Engine | ECN Spray B
 - Heavy Duty Diesel Engine | Sandia Engine

Conclusions

Conclusions

- ✓ FGM combustion closure was incorporated into OpenFOAM and Lib-ICE to model reacting spray and Diesel engine conditions.
- ✓ Progress variable source provided by FGM tabulation was capable of accurate predictions for state of thermodynamics of the mixture under non/partially premixed combustion configurations.
- ✓ For studied ambient temperature conditions, results of ignition delay, PRR or AHRR as well as flame lift-off was well agreeing with the experiments.
- ✓ n-dodecane chemical kinetics still suffers from comprehensive mechanism for low temperature combustion and there is a need for an extensively validated mechanism.

Thanks for your attention!

Amin Maghbouli contact: amin.maghbouli@gmail.com