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INTRODUCTION

Dual-Fuel Internal Combustion Engine 95'%3:?3%3"

We power your future

=

pL i

HW

AIR & GAS COMPRESSION
INTAKE OF AIR & GAS

“ [DF ™
% | P
—

Ui IGNITION
GHENT BY PILOT FUEL

UNIVERSITY 3

1




GOALS
* Develop CFD tool to support the development of Dual-Fuel ICE

« Complex: Diesel spray igniting the premixed fuel-air mixture, that
burns through flame propagation

 First focus on pieces of the puzzle:
= Cold flow, in-cylinder analysis
= Combustion simulations + in-cylinder heat transfer
= Simulation of a (combusting) marine diesel spray
= Dual fuel combustion + flame propagation versus extinction
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IN-CYLINDER HEAT TRANSFER

 Evaluate heat flux through engine walls

» Analyse predictable CFD wall models
= Currently being done based on old engine experiments /

- Combine in-house experiments with CFD e N
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WALL HEAT FLUX MODELS

* Apply assumptions and simplify thin shear-layer energy eq.

or _ 9T _ OT Op, O oT :
p |+l m + Uy | = M7= |+
“r| o T e T By] ot +ay[(“ )Oy] €

+ 1 4+ (yT-40+1 .31(0.476  /Pr)
>T7 = 0.4767 [l (y + Pr04767) In(40 + Pr 0.4767)] +10.2384 + P ( 0.4767 /Pr )
dpP

With T+ = Mln(T—W), pt = M (Rakopoulos et al.)

dw T qwlut
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-> Gu = T

T [in(y* + 04707Pr) in(40 + 5o oerpy )] +10.2384
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CONVECTIVE HEAT FLUX MODEL

e Calculate heat flux based on the convective law
qw = h (Tgas — Tw)

=>» Model convective coefficient h by Pohlhausen equation

hL
= Nu = a Re? Pr¢

» Characteristic length L = Bore

« Characteristic velocity U = v/2k
 Constantsa,b&c=0.15,0.8&0

[S. Broekaert. “A Study of the Heat Transfer in Low Temperature Combustion Engines.” Ph.D. at
Ghent University (2018)]
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NO MODELLING

» Calculate heat flux from definition with temperature gradient

dT
dy

|w

Aw = O\W + )\w,t)

* Low Reynolds formulation

Resolve near wall behavior and temperature gradient
* High Reynolds formulation

Tune by adjusting Pr,
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IMPLEMENTATION IN OPENFOAM

dQw = Cp (o + O(W,t)

dy

lw

a: Thermal diffusivity expressed in kg/m/s

Wall heat flux model

Aw

ot T (T, /T) — 2.2 (& g 117.31) Oy ¢ = —= —
iy = Pep dt ur \ 0.4767 1+ w,t dT/ c w
i [In(y* + spipr ) — (40 + 55i—)] +10.2384 dyw p
Convective heat flux model q
qw:h(Tgas_Tw) Oy ¢ = —= w — Oy
hL ' dT/ C
?=Nu=aRebPrC dy,, P
No modelling ~
dT -0 _ M
qw = (A + Aw,t)@ lw Aw,t = or Oyt = PTt
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CHEMISTRY SOLVERS

TDAC TDAC CCM

« Tabulated Dynamic Adaptive

CFD solver

Chemistry
« Tabulate earlier chemistry
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solutions and try to retrieve
“nearby” solutions
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Mech. Reduct.

* Only keep active, important
species before solving ODE

ODE solver
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Multi-zone chemistry
Chemistry Coordinate Mapping
Don’t tabulate, do reduction
Instead group cells with almost
equal state (p, p, T) and solve
chemistry once for those cells.



MASS FRACTIONS-INITIALISATIO

* Do a full cycle gas dynamics simulation
= Define mass fraction of important species at IVC (also I-EGR)

= Check amount of fuel coming in (related with p, T)

= Check stratification —“—

* Volumetric integral
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@ -25° BTDC

Species Mass fraction [%]
Fuel = C,H,q4 1.439
O, 22.102
N, 74.694
H,O 1.339
CO, 0.426

uel
E 1.583e-02

“0.011873
—0.007915

--0.0039575
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RESULTS
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RESULTS
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RESULTS — QUALITATIVE
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RESULTS — QUANTITATIVE
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RESULTS — QUANTITATIVE
Total Heat
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RESULTS — QUANTITATIVE
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CONCLUSIONS

Able to simulate HCCI operation and study the heat flux through ICE walls

Wall heat flux models are not able to correctly capture heat flux in ICE’s,
= Quantitatively and qualitatively
Tuning with Pr, allows a better prediction of the peak
= Extension to other operations with same optimal constants doubtful
Good results with convective law
= Parameters look to be engine specific
Low Reynolds approach better matches curve qualitatively, with good
results considering peak and integral heat flux
= Numerically intensive, impractical for 3D engine simulations
For practical engine optimization:

im = 3D simulation with wall modelling of choice

ﬁ',j,f\',“ETRngYSpecific heat flux optimization with closed cycle low Reynolds formulation
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