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INTRODUCTION

IMO: International 

Maritime Organization
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INTRODUCTION
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Dual-Fuel Internal Combustion Engine



GOALS
• Develop CFD tool to support the development of Dual-Fuel ICE

• Complex: Diesel spray igniting the premixed fuel-air mixture, that
burns through flame propagation

• First focus on pieces of the puzzle:
 Cold flow, in-cylinder analysis 
 Combustion simulations + in-cylinder heat transfer
 Simulation of a (combusting) marine diesel spray  
 Dual fuel combustion + flame propagation versus extinction
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IN-CYLINDER HEAT TRANSFER
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• Evaluate heat flux through engine walls

• Analyse predictable CFD wall models
 Currently being done based on old engine experiments

• Combine in-house experiments with CFD



WALL HEAT FLUX MODELS

• Apply assumptions and simplify thin shear-layer energy eq.
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CONVECTIVE HEAT FLUX MODEL
• Calculate heat flux based on the convective law

Model convective coefficient h by Pohlhausen equation

• Characteristic length L = Bore

• Characteristic velocity U =  

• Constants a, b & c = 0.15, 0.8 & 0 
[S. Broekaert. “A Study of the Heat Transfer in Low Temperature Combustion Engines.” Ph.D. at 
Ghent University (2018)]
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NO MODELLING

• Calculate heat flux from definition with temperature gradient

• Low Reynolds formulation 

Resolve near wall behavior and temperature gradient

• High Reynolds formulation 

Tune by adjusting Prt
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Wall heat flux model

Convective heat flux model

No modelling

IMPLEMENTATION IN OPENFOAM
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CHEMISTRY SOLVERS

TDAC
• Tabulated Dynamic Adaptive

Chemistry

• Tabulate earlier chemistry

solutions and try to retrieve

“nearby” solutions

• Only keep active, important 

species before solving ODE
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TDAC CCM
• Multi-zone chemistry

• Chemistry Coordinate Mapping

• Don’t tabulate, do reduction

• Instead group cells with almost

equal state (p, ρ, T) and solve 

chemistry once for those cells. 



MASS FRACTIONS-INITIALISATION

• Do a full cycle gas dynamics simulation
 Define mass fraction of important species at IVC (also I-EGR) 

 Check amount of fuel coming in (related with p, T) 

 Check stratification

• Volumetric integral
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@ -25° BTDC @ IVC

Species Mass fraction [%]

Fuel = C7H16 1.439

O2 22.102

N2 74.694

H2O 1.339

CO2 0.426



RESULTS
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RESULTS
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RESULTS – QUALITATIVE 
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RESULTS – QUANTITATIVE 
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RESULTS – QUANTITATIVE 
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RESULTS – QUANTITATIVE 
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CONCLUSIONS
• Able to simulate HCCI operation and study the heat flux through ICE walls

• Wall heat flux models are not able to correctly capture heat flux in ICE’s,
 Quantitatively and qualitatively

• Tuning with Prt allows a better prediction of the peak
 Extension to other operations with same optimal constants doubtful

• Good results with convective law
 Parameters look to be engine specific

• Low Reynolds approach better matches curve qualitatively, with good 
results considering peak and integral heat flux
 Numerically intensive, impractical for 3D engine simulations

• For practical engine optimization:
 3D simulation with wall modelling of choice
 Specific heat flux optimization with closed cycle low Reynolds formulation
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