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Motivation

 Predesign of a combustion system for EU7 specifications
 To explore the impact of design decisions with reduced experimental work
 Low levels of fuel consumption, with no penalization of NOx and soot

MOTIVATION

Displacement volume 2,2 L

Number of cylinders 4

Compression Ratio 16

Diesel Fuel System 2200 bar

Step shape
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Objective
 The target is to obtain a combustion system design for a compression-ignited

engine, optimized with respect to the reduction of the indicated specific fuel
consumption, NOx and soot emissions

 Develop a methodology for coupling CFD and Particle Swarm Optimization
(PSO)

 Analyze the influence of the combustion system configuration on the
combustion performance

Objectives

 Bowl Geometry Automated piston bowl shape generation
 Number of nozzle orifices
 Swirl ratio
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Combustion System Development Methodology
 The target is to conduct a 3D-CFD guided combustion system hardware

development using efficient optimization tools.

Methodology

CFD Model formulation and 
Validation

Simplified Mesh

PSO definition

CFD – PSO integration

•Set up the CFD model
•Calibrate spray and 
emissions vs experiments

•Build a mesh with fewer cells
•Validate the results

• Initial sample distribution 
within the design space

•Particle size determination

•Automated piston shape
•Automated mesh generation
•Evaluate fitness values
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CFD Model formulation and Validation

Methodology

 The software OpenFoam with
LibICE was used to develop
the model

 Fuel: NC7H16
 Sector mesh: 1/10
 Specific ROI profile from VIM

Dimensionality 3D

Cell count TDC 52 kCells

Cell count IVC 398 kCells

Turbulence RNG k-ε RANS

Wall Heat Transfer Angelberger

Spray Models Injection: Blob Injector
Break-up: KH-RT
Collision: off
Evaporation: standard

Combustion Model RIF-based tabulation

Chemical 
Mechanism

NC7Curran

Emission Models Soot: Leung Lindstedt
Jones

9 processors (~24h)
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CFD Model formulation and Validation
 The CFD model validation is presented in the figures
 Predictions are in good agreement with the experimental data
 Operating point: Full load

Methodology

IMEP ISFC NOx YSoot
[bar] [g/KWh] [ppm] [-]

Experimental 22 191 1254 4E-06
Fine mesh 22.26 192.84 1277.78 3.03E-06
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Simplification of the Mesh and Validation

Methodology

 A coarse mesh was
implemented to reduce
computational cost and be able
to perform 1 case in less tan
17h (4 processors)

Dimensionality 3D

Cell count TDC 26.9 kCells

Cell count IVC 203.3 kCells

Turbulence RNG k-ε RANS

Wall Heat Transfer Angelberger

Spray Models Injection: Blob Injector
Break-up: KHRT
Collision: off
Evaporation: standard

Combustion Model RIF-based tabulation

Chemical 
Mechanism

NC7Curran

Emission Models Soot: Leung Lindstedt
Jones
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Simplification of the Mesh and Validation
 Predictions are in good agreement with the experimental data, also with the

coarse mesh
 Operating point: Full load

Methodology

IMEP ISFC NOx YSoot
[bar] [g/KWh] [ppm] [-]

Experimental 22.36 191.77 1253.72 4.18E-06
Coarse mesh 22.45 191.12 1459.97 2.10E-06
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Methodology
 Coupling of the CFD with an Optimization methodology: PSO
 Moderate number of input parameters  Key inputs are included
 Objective function definition high NOx or ISFC penalizes the objective function output

Methodology

Range G1 G2 nHoles Swirl

[mm] [mm] [-] [-]
Min -1 0 7 1.8
Max 2.5 1 10 2.2

Geometric Injection Air Mgmnt.

Input parameters range

Baseline 0 0 10 2
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Particle Swarm Optimization - Definition
 It is inspired by social behavior of bird flocking

 Optimizes functions by iteratively trying to improve candidate solutions.

 The candidate solutions are called particles and the particles are improved
moving them around the parameters search space.

Methodology

 Each particle stores its best position until now
(local best).

 The method stores the best position reached
among all the particles during the whole process
until now (global best).

 Positions and velocities of the particles are
influenced by the position of its local best and the
global best.
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Particle Swarm Optimization - Example
 Example of particle displacement in the domain

Methodology

 Red circle: global best

 Function 21 of 
benchmark CEC2005
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Particle Swarm Optimization – Benefits / trade-offs

Methodology

Benefits
 The cost rely on the evaluations of the

function.
 PSO can search in large parameter

spaces of candidate solutions.
 PSO does not require the function be

differentiable.
 Easy to apply improvements.

Trade-offs
 No guarantee that an optimal solution

will be found.
 Possible early stuck in local minima.

Comparison with other GAs

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝑉𝑉𝑖𝑖+1
𝑉𝑉𝑖𝑖+1 = 𝑤𝑤𝑤𝑤𝑖𝑖 + 𝐶𝐶1𝑹𝑹1 𝑷𝑷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 − 𝑋𝑋𝑖𝑖 + 𝐶𝐶2𝑹𝑹2(𝑮𝑮𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑖𝑖)

Formulation

J. Vesterstrom and R. Thomsen, Proceedings of the 2004 Congress on
Evolutionary Computation (IEEE Cat. No.04TH8753), USA, 2004 
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PSO – CFD Coupling:
 Flowchart methodology

Methodology

Start PSO

Generate initial population

Initial sample distribution within the design 
space 

Evaluate Objectives

Update Gbest, Pbest

Update velocity, position

CFD – OpenFoam
•Automated piston 
shape

•Automated mesh 
generation

•ROI Virtual Model

Stop criteria 
reached?

End PSO

No

yes •Merit Function

Evaluate Objectives

𝑋𝑋𝑖𝑖+1 = 𝑋𝑋𝑖𝑖 + 𝑉𝑉𝑖𝑖+1
𝑉𝑉𝑖𝑖+1 = 𝑤𝑤𝑤𝑤𝑖𝑖 + 𝐶𝐶1𝑹𝑹1 𝑷𝑷𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏,𝑖𝑖 − 𝑋𝑋𝑖𝑖 + 𝐶𝐶2𝑹𝑹2(𝑮𝑮𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑋𝑋𝑖𝑖)
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Methodology - Bowl geometry generator
 Geometry is generated as a surface of revolution from a parameterized profile (obtained

from a Bezier curve)
 The profile can generate different types of geometries satisfying restrictions: CR
 Flexible, only bowl maximum width and depth are required
 The crevice between piston and liner was kept constant in shape
 However, for this study only the variables related to the step are modified

Methodology

P1 P2

P3

P4

P5
P6

P7
G1

G2
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Methodology – DCC Mesh Generator

Methodology

Every mesh was generated by the
DCCmeshtool “automatically”.

Some considerations:
 The Bowl Bezier curve generated is an

input
 The Control points for block definition

were updated according the bowl step
and re-entrant curvature  to avoid
negative volumes and skewness issues

 The hole number was an input  to
define the sector mesh

 Challenges on the angle of the spray and
the orientation of the mesh

Control points

Mesh particle 7 generation 1

Mesh particle 8 generation 2
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Methodology - Summary
 Coupling of the PSO – CFD codes
 Moderate number of input parameters  Key inputs are included
 Objective function is optimized  high NOx or ISFC penalizes the objective function

output

Methodology

Range G1 G2 nHoles Swirl

[mm] [mm] [-] [-]
Min -1 0 7 1.8
Max 2.5 1 10 2.2

Geometric Injection Air Mgmnt.

Input parameters range

Baseline 0 0 10 2
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Results
 The Merit function is formulated to consider the relative importance of ISFC,

NOx, and soot against the baseline configuration
 A set of weighting factors were used and scaled linearly

Results
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Results: Merit function for all particles of generations

Results
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Results

Results: NOx and soot comparison
 Emissions comparison between the experimental data (baseline case) and the

results obtained to each simulation from the new geometries.
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Results: in-Cylinder Pressure and Heat Release Rate
 Comparison of baseline and best case predicted

Results

IMEP ISFC NOx YSoot
[bar] [g/KWh] [ppm] [-]

Coarse mesh 22.45 191.12 1459.97 2.10E-06
Part. 15 gen. 1 22.46 192.54 1118.82 2.41E-06
Part. 6 gen. 4 23.17 185.22 2326.19 1.79E-07
Part. 3 gen. 6 22.62 190.27 1173.79 5.12E-07

Particle 3 – Gen 6:
- 10 holes
- Swirl 2.1
- G1: 1.11
- G2: 0.88
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Results

Results: NOx ISFC trade-off
 The favourable configuration is selected from the pareto front.

Particle 3 – Gen 6:
- 10 holes
- Swirl 2.1
- G1: 1.11
- G2: 0.88
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Results

Results:
Baseline – Best case comparison
 What is happening in the bowl?

Baseline Best Case
27 CAD

50 CAD

Temperature

Baseline Best Case

YNO
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Conclusions
 In general, the CFD model setup provides a reliable prediction of combustion

performance, in terms of in-cylinder pressure, RoHR and pollutant emissions,
both for the fine and coarse meshes.

 Particle swarm optimization method has been coupled to the OpenFOAM Lib-
ICE code and validated.

 An optimum configuration has been obtained that fulfills NOx and Soot
restrictions improving slightly fuel consumption. However, further iterations will
be performed to ensure that this optimum is the global best.
 The best case predicted produced a 0,45% reduction in consumption and 24% in NOx levels.

 The main effects of the step bowl configuration have been confirmed  it
enhances the late mixing process and deflects the flame, keeping it away from
the cylinder wall.

Conclusions & Next steps
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Next steps
 Increase the number of bowl related geometrical parameters to get more

flexibility on the combustion system design (on going)

 Add the spray included angle to go for a full matching optimization 
challenges on the oriented mesh automatic generation

 Extend the study including different operating conditions and engine settings
(SOI, ROI, Inj Pressure,…) – Coupling with an in-house developed virtual
injector model (ongoing)

 Apply the methodology to the optimization of the combustion system using
substitutes of diesel fuel with significantly different physical and chemical
properties like DME, OMEs

Conclusions & Next steps
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THANK YOU VERY MUCH !

ANY QUESTION ?
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APPENDIX
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Methodology – Injection rate profile generation
 This tool can generate the main injection and any number of pilot and post

injection required
 Allows to modify the injection pressure, fuel mass or nozzle hole diameter
 Requires experimental data of the injector to be trained
 Keeps the start and end of injection slopes

Methodology
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