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Fuels from Biomass Fast Pyrolysis
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Antiknocking Properties of Oxygenated Aromatic Hydrocarbons (OAHCs)
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Buttgen, R.D. et al. (2020). Submitted to Proceedings of the Combustion Institute

RON MON DCN

Ethanol EtOH 109 90

Toluene TOL 121 107

Anisole AN 120 98 6

Benzyl-alcohol BA 111 92 8

Guaiacol GA 19

4-methyl-anisole MA 166 148 7

Phenetol PHT <120 <98

Compound 
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Additional Motivations: PAHs Growth and Oxidation Kinetics
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Kinetic Model Development: Recent Efforts @ CRECK-POLIMI
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Goals:
• Characterize the reactivity of OAHs by investigating the influence of single and multiple substitutions

(-OCH3, OH, CH3, -CH2OH, -CHO, …)

• Define Reaction Classes applicable to MAHs (benzene, toluene, …), OAHs (phenol, anisole, guaiacol, 
methyl-anisole, methyl-phenol, …) and PAHs – same approach as for linear/branched fuels

• Compute rate constants of the above reactions classes with high accuracy ab initio methods

• Derive Rate Rules from the above calculations

• Test and validate a detailed kinetic model for OAHCs anticknocking additives (Guaiacol and Phenetol)

Recent efforts:
Reac. Chem. Eng. (2019), 4.3 Reac. Chem. Eng. (2020), in press.Phys. Chem. Chem. Phys (2018), 20.16

+ 3 Symposium Submissions
(POLIMI/RWTH)

• 1 Experimental study in RCM
• 2 Theoretical studies
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Proximity Effects on BDE in Oxygenated Mono-Aromatic Hydrocarbons
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Pelucchi et al. Reac. Chem. Eng. (2019), 4.3
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CH3—O and O—H BDEs



7

Rapid Compression Machine Experiments @ PCFC-RWTH
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p=10-80 bar, IDT=5-300 ms, T=650-1100 K

IDT
Fuel  

𝒑𝒄 Fuel O2 Ar N2 

bar mol% 

Phenetol (PHT) 10, 20 2.1 20.6 31.0 46.3 

4-Methylanisole (MA) 10, 20 2.0 20.6 31.0 46.4 

Guaiacol (GA) 
10 2.6 20.5 53.9 23.0 

20 2.6 20.5 3.9 73.0 

Benzyl alcohol (BA) 10, 20 2.4 20.5 3.9 73.2 

 

 8 datasets for pure additives in «air», φ=1.0 

 4 datasets for n-pentane/additive mixtures (80/20 mol%) 
in «air» (RONn-C5=62, RONmix=72-83), φ=1.0, p=10 bar
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Rapid Compression Machine Experiments @ PCFC-RWTH

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology
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BE C6H5-H 113.0 1
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PH C6H5O-H 86.2 3

AN C6H5O-CH3 64.8 4
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MA CH3C6H5O-CH3 61.7 6

BA C6H5CH2-OH 80.0 7

GA HOC6H5O-CH3 57.2 8

Slowest

FastestBDE=Bond Dissociation Energy 
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p=10 bar, φ=1.0
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Thus we started to develop detailed kinetic
models for the best (PHT-Phenetol) and the 

worst (GA-Guaiacol) candidates!

Pure Fuel Mixture
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PHT MA

MA TOL
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GA GA

Rapid Compression Machine Experiments @ PCFC-RWTH
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Kinetic model development: Reaction Classes (example: toluene)

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

Radical addition and decomposition
to smaller molecules (or smaller
rings) via ring opening

+H
+

Molecular reactions
-CO

Initiation reactions
+M

-R (H, CH3)

Pelucchi et al. Phys. Chem. Chem. Phys (2018), 20.16 Pelucchi et al. Reac. Chem. Eng. (2019), 4.3 Pratali Maffei et al. Reac. Chem. Eng. (2020), in press

+R

-RH

+R

-RH
H-abstraction reactions

Pratali Maffei et al. 
Submitted to Proc. Comb. Inst. (2020)

R=H, OH, CH3, O, HO2

+R

-R (H, CH3)
(Ipso-)Addition reactions

Pratali Maffei et al. 
Submitted to Proc. Comb. Inst. (2020)
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Kinetic model development: Reaction Classes (example: toluene)

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

Pelucchi et al. Phys. Chem. Chem. Phys (2018), 20.16 Pelucchi et al. Reac. Chem. Eng. (2019), 4.3 Pratali Maffei et al. Reac. Chem. Eng. (2020), in press

Resonance Stabilized
Radicals recombination

+

Radical recombination+ HO2 + CH3

Radical isomerizations

-CH3 Radical decomposition-H
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Kinetic model development: Reaction Classes (example: toluene)

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

Pelucchi et al. Phys. Chem. Chem. Phys (2018), 20.16

Radical addition to O2
+O2

+O2

+O2

-OH

Radical addition and elimination
(can be well skipping, and give
"branching")

+O2

-O

Peroxy radical isomerization to 
phenylhydroperoxy or 
benzylhydroperoxy radicals

Ring opening, extra addition to O2, 
cyclization reactions,
da Silva et al., J. Phys. Chem. A, (2007)

-OH Hydroperoxy radical 
decomposition to quinone
species

Radical oxidation reactions
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Kinetic Model Development: Rate Rules from Theoretical Calculations
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1) “Rate constants for the H-abstraction reactions from mono-aromatic hydrocarbons by 

Ḣ, ĊH3, ȮH and 3O2: a systematic theoretical investigation.”
Luna Pratali Maffei, *Matteo Pelucchi, Rene Daniel Büttgen, Karl Alexander Heufer, Tiziano Faravelli, Carlo Cavallotti

2) “Rate constants for the Ḣ ipso-addition reactions on mono-aromatic hydrocarbons with single 

and double OH/CH3 substitutions: a systematic theoretical investigation.” 
Luna Pratali Maffei,*Matteo Pelucchi, Tiziano Faravelli, Carlo Cavallotti

R OR

R OR

• 52 H-abstraction reactions (1)

• 14 Ipso-addition reactions (2)

• >30 in progress (different radicals)
• + Other Reaction classes
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• Allows to automatically compute rate constants
with a factor of ~2 accuracy (±0.7 kcal/mol, «chemical accuracy»)

• Optimized routines developed and tested for different Reaction Classes

• Different parallel jobs allow to:
• Investigate chemistry by Reaction Classes (i.e. changing reactants)
• Assess the accuracy of the methods for a given Reaction Class (by comparison with experimental ks)
• Derive fundamentally based Rate Rules, by analogy

PES investigation (multi well)

Rate Constants: Conventional/VTST/VRC-TST, Tunneling

Master Equation

EStokTp

H-abstractions

Isomerizations

Additions β-scissions

Barrierless Reactions

Geometry and frequencies: 
Reactants, Transition States, Products, VdW Wells 

Conformers 
Analysis

Anharmonicities
Hindered Rotors

Symmetry
High Level 
Energies

IRC 

H

OOH

OH

CH3

O

CH4

CH3OH

C2H6

C2H4

H2CO

…

…

Reactants

Reaction Classes
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Kinetic Model Development: Rate Rules from Theoretical Calculations
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Rate constant calculation according to EStokTP protocol1

Cavallotti et al., J. Chem. Theory Comput., 15.2 (2018): 1122-1145.

https://github.com/PACChem/EStokTP

Theoretical Gas Phase Kinetics
Transition State Theory
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Kinetic Model Development: Rate Rules from Theoretical Calculations
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Pratali Maffei et al., Submitted to Proc. Comb. Inst. (2020)
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Kinetic Model Development: Rate Rules from Theoretical Calculations
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ΔHr-Reaction Enthalpy [kcal/mol]

H-abstractions from the functional groups

● R=ȮH
Δ R=Ḣ
□ R=ĊH3

◊ R= 3O2

Benzene
Anisole
Toluene
Phenol

EA=0.40 ΔHr,phenol+ 16.21

EA=0.75 ΔHr,benzene+ 9.32

EA=0.57 ΔHr,toluene+ 16.8

EA=0.62 ΔHr,anisole+ 14.0

R2>0.9

Pratali Maffei et al., Submitted to Proc. Comb. Inst. (2020), 1
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Kinetic Model Development: Rate Rules from Theoretical Calculations
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Pratali Maffei et al., Submitted to Proc. Comb. Inst. (2020), 2
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CRECK Model Update
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 ~600 species, ~20000 reactions

 Modularity

 Hierarchy

NEW! Version 1911 Available @ creckmodeling.chem.polimi.it 

 H2 to Heavy Fuel Oils (HT and LT) + NOx + SOOT

 Smaller subsets, obtained from the same global 
model, available on the website

 Ad Hoc Reduced Mechanisms available upon 
request (and soon on the website)
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Model Validation, criticisms of interconnected pathways

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology
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Model Validation, criticisms of interconnected pathways
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Model Validation: Toluene, Phenol and Anisole

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

 CH3

 OH

• Good model performances after update with 
new sets of rate constants from theory

• IDT targets include Shock Tubes and RCM 
(p=10-40 bar, T=800-1400 K)

• Other targets include speciation
measurements in ideal reactors, and flame
speeds

→Solid basis to develop a model 
for Guaiacol and Phenetol
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ΔHr-Reaction Enthalpy [kcal/mol]

H-abstractions from the functional groups

● R=ȮH
Δ R=Ḣ
□ R=ĊH3

◊ R= 3O2

Benzene
Anisole
Toluene
Phenol

EA=0.40 ΔHr,phenol+ 16.21

EA=0.75 ΔHr,benzene+ 9.32

EA=0.57 ΔHr,toluene+ 16.8

EA=0.62 ΔHr,anisole+ 14.0

If Δ > than expected accuracy
rate parameters can be derived to 

account for a different reactivity
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Kinetic Model Development: Analogy
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Difference in BDE (+0.5 kcal/mol) within the expected
accuracy (±0.7 kcal/mol) of theory, 

→reasonable to assume that the rate constants involving this
bond will be similar to that of anisole



Reaction 

1) GUAIACOL = RCATEC + CH3  

2) GUAIACOL + H = RGUAIACOL + H2 

3) GUAIACOL + OH = RGUAIACOL + H2O 

4) GUAIACOL + CH3 = RGUAIACOL + CH4 

5) GUAIACOL + O2 = RGUAIACOL + HO2 (dup) 

6) GUAIACOL + H = RGUAIACOLC + H2 

7) GUAIACOL + OH = RGUAIACOLC + H2O 

8) GUAIACOL + CH3 = RGUAIACOLC + CH4 

9) GUAIACOL + O2 = RGUAIACOLC + HO2 

10) H + GUAIACOL = CATECHOL + CH3 

11) H + GUAIACOL = OH + CRESOL   

12) H + GUAIACOL = OH + C6H5OCH3 

13) H + GUAIACOL=C6H5OH + CH3O 

14) OH + GUAIACOL=CATECHOL + CH3O 

15) CH3 + GUAIACOL = CRESOL  +  CH3O 

16) GUAIACOL => CO + CH2CO + C4H6 

17) RGUAIACOL => RGUAIACOLC  

18) RGUAIACOLC => CH2O + C6H4OH   

19) RGUAIACOL => CO + CH2O + C5H5 

20) RGUAIACOLC + O2 = RGUAIACOLC-OO 

21) RGUAIACOLC-OO = RGUAIACOLC-QOOH 

22) RGUAIACOLC-QOOH => C4H4 + CH2O + 2CO + OH 
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Kinetic Model Development: Guaiacol from Anisole and Phenol!

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

Unimolecular Initiation

H-abstraction reactions

Ipso-additions

Radical decomposition and isomerizations

Radical oxidation reactions (LT-like)

O

C O

O

H

O
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Model Validation: Guaiacol and Phenetol
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Kinetic analysis 

13th February 2020, 4th Two-day Meeting on ICE Simulations Using OpenFOAM® Technology

-1 -0.5 0 0.5 1

GUAIACOL=CH3+RCATEC

HO2+CH3O2=O2+CH3O2H

RGUAIACOLC-QOOH=>OH+2CO+CH2O+C4H4

HO2+GUAIACOL=H2O2+RGUAIACOL

2HO2=O2+H2O2

H+O2(+M)=HO2(+M)

O2+RCATEC=>OH+2CO+C2H2+CH2CO

RGUAIACOLC=CH2O+C6H4OH

O2+RGUAIACOLC=RGUAIACOLC-OO

OH+GUAIACOL=CH3O+CATECHOL

OOC6H4OH=>CO+HCO+C2H2+CH2CO

OOC6H4OH=>CO+CO2+C4H5

CH3O2H=OH+CH3O

HO2+CH3=OH+CH3O

H+GUAIACOL=CH3+CATECHOL

OH+C4H4=>CO+C3H5-A

OH+SALICALD=>H2O+2CO+C5H5

O2+CH3OH=HO2+CH3O
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Model Validation: OAHs/n-pentane
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Conclusions and future work
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 Why mono-aromatic and oxygenated mono-aromatic hydrocarbons combustion chemistry?

 Promising anti-knocking additives (impact on PAH/SOOT to be investigated) from biomass 
conversion 

 Reference fuels (e.g. toluene, xylene…)

 Key building blocks in PAHs and Soot Growth/Oxidation

 Systematic definition of Reaction Classes and Rate Rules is missing from the literature

 Ignition Delay Time Measurements in Rapid Compression Machine (and Shock Tube) confirm 
the anti-knock potential of oxygenated aromatics and serve as a first target for kinetic 
models 

 A first working model developed by better defining Reaction Classes and Rate Rules from 
theory and by analogy from an ongoing thorough revision of MAH/PAHs kinetics 

 Systematic theoretical calculations are useful to define accurate rate rules, 

in particular when only limited experimental targets exist (IDT, LFS, …, ks), and no 
comprehensive theoretical investigations exist 

 A fully theory-based approach to fuel design is achievable, but some limitations still exist

 Model has to be working anyway (very interconnected pathways might be an issue)  

 It is a critical iterative process (develop => implement new parameters => re-validate 
and fix!), but it is starting to be faster (and automated)  
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